화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.103, 348-357, November, 2021
Role of crystallinity on the thermal and viscous behaviour of polyethylene glycol-in-silicone oil (o/o) phase change emulsions
E-mail:
Stable polyethylene glycol-in-silicone oil phase change emulsions were successfully prepared with a selected silicone surfactant. These oil-in-oil (o/o) emulsions have been scarcely examined up, despite the highly remarkable properties of both phases for energy recovery applications and cosmetic/pharmaceutical compositions. The objective of the present work was to study the effect of composition (surfactant and disperse phase concentrations) and the post-processing conditions (further agitation at the processing temperature for 24 h) on the final features of the emulsion. For this purpose, optical morphology, thermo-physical and the rheological behaviour of the emulsions and binary blends of their compounds were measured and analysed. Special attention has been paid to structural changes and crystallinity modifications of the emulsion disperse phase. The observed miscibility of the silicone surfactant and silicone chains with the disperse phase reduces its crystallinity degree and modifies in the crystallization mechanism of the polyethylene glycol, from heterogeneous to homogeneous nucleation. Interestingly, the change in the disperse phase crystallinity remarkably modifies final thermal and rheological properties of the emulsion.
  1. Crespy D, Landfester K, Soft Matter, 7(23), 11054 (2011)
  2. Imhof A, Pine DJ, J. Colloid Interface Sci., 192(2), 368 (1997)
  3. Vold RD, J. Chem. Educ., 42(12), 692 (1965)
  4. Hamill RD, Olson FA, Petersen RV, J. Pharm. Sci., 54(4), 537 (1965)
  5. Hamill RD, Petersen RV, J. Pharm. Sci., 55(11), 1274 (1966)
  6. Hamill RD, Petersen RV, J. Pharm. Sci., 55(11), 1268 (1966)
  7. Atanase LI, Riess G, Colloids Surf. A: Physicochem. Eng. Asp., 458, 19 (2014)
  8. Atanase LI, Riess G, Int. J. Pharm., 448(2), 339 (2013)
  9. Jaitely V, Sakthivel T, Magee G, Florence AT, J. Drug Deliv. Sci. Technol., 14(2), 113 (2004)
  10. Suitthimeathegorn O, Turton JA, Mizuuchi H, Florence AT, Int. J. Pharm., 331(2), 204 (2007)
  11. Suitthimeathegorn O, Jaitely V, Florence AT, Int. J. Pharm., 298(2), 367 (2005)
  12. Ceballos MR, Brailovsky V, Bierbrauer KL, Cuffini SL, Beltramo DM, Bianco ID, Food Res. Int., 62, 416 (2014)
  13. Nanjwade BK, Patel DJ, Udhani RA, Manvi FV, Sci. Pharm., 79(4), 705 (2011)
  14. Patel N, Schmid U, Lawrence MJ, J. Agric. Food Chem., 54(20), 7817 (2006)
  15. Crespy D, Landfester K, Polymer, 50(7), 1616 (2009)
  16. Klapper M, Nenov S, Haschick R, Muller K, Mullen K, Accounts Chem. Res., 41(9), 1190 (2008)
  17. Lin CC, Yang CH, Chang NF, Wu PS, Chen YS, Lee SM, Chen CW, Int. J. Mol. Sci., 12(9), 9546 (2011)
  18. D’souza A, Shegokar R, Expert Opin. Drug Deliv., 13(9), 1257 (2016)
  19. Fruijtier-Polloth C, Toxicology, 214(1), 1 (2005)
  20. Mojsiewicz-Pienkowska K, Handbook of Polymers for Pharmaceutical Technologies, John Wiley & Sons Ltd, 363 (2015).
  21. Schalau GK, Aliyar HA, Excipient Applications in Formulation Design and Drug Delivery, Springer International Publishing, Cham, pp.423 2015.
  22. Kim JC, Lee MH, Rang MJ, Drug Deliv., 10(2), 119 (2003)
  23. Dahms G, Zombeck A, Cosmet. Toilet, 110(3), 91 (1995)
  24. Corbo FA, Hong Q, Gonzalez AD, Compositions having a plurality of discrete emulsions. US8613911B2, 2013.
  25. Davis A, Topical formulation. US20180028438A1, 2018.
  26. Zanutto L, Orsoni S, Fredon L, Cosmetic/dermatological inverse emulsions containing calcitriol and clobetasol 17-propionate. US20050281850A1, 2005.
  27. Delgado-Sanchez C, Cuadri AA, Navarro FJ, Partal P, Sol. Energy Mater. Sol. Cells, 221 (2021)
  28. Garti N, Sato K, Crystallization Processes in Fats and Lipid Systems, CRC Press, 2001.
  29. Vilasau J, Solans C, Gomez MJ, Dabrio J, Mujika-Garai R, Esquena J, Colloids Surf. A: Physicochem. Eng. Asp., 384(1), 473 (2011)
  30. Zhang W, Liu L, J. Cosmet. Dermatol. Sci. Appl., 03(02), 139 (2013)
  31. McClements DJ, Adv. Colloid Interface Sci., 174, 1 (2012)
  32. Derkach SR, Adv. Colloid Interface Sci., 151(1), 1 (2009)
  33. Chen J, Zhang P, Appl. Energy, 190, 868 (2017)
  34. Schramm LL, Emulsions, Foams, and Suspensions: Fundamentals and Applications, John Wiley & Sons, 2006.
  35. Tadros TF, Emulsion formation and stability, John Wiley & Sons, 2013.
  36. Morimoto T, Togashi K, Kumano H, Hong H, Energy Conv. Manag., 122, 215 (2016)
  37. Shao JJ, Darkwa J, Kokogiannakis G, Renew. Energy, 87, 509 (2016)
  38. Gladwell N, Rahalkar RR, Richmond P, Rheol. Acta, 25(1), 55 (1986)
  39. Tatar BC, Sumnu G, Sahin S, Advances in Food Rheology and Its Applications, Woodhead Publishing, pp.437 2017.
  40. Meng QH, Hu JL, Sol. Energy Mater. Sol. Cells, 92(10), 1260 (2008)
  41. Pielichowski K, Flejtuch K, Polym. Adv. Technol., 13(10-12), 690 (2002)
  42. Sangroniz L, Cavallo D, Muller AJ, Macromolecules, 53(12), 4581 (2020)
  43. Michell RM, et al., Polymer Crystallization I: From Chain Microstructure to Processing, Springer International Publishing, Cham, pp.215 2017.
  44. Luo C, Chen W, Gao Y, Polym. Sci. Ser. A, 58(2), 196 (2016)
  45. Mohammed A, Okoye SI, Salisu J, Int. J. Sci. Basic Appl. Res. IJSBAR, 25(2), 256 (2016)
  46. Dimitrova TD, Leal-Calderon F, Adv. Colloid Interface Sci., 108-109, 49 (2004)
  47. Reynolds PA, Gilbert EP, White JW, J. Phys. Chem. B, 105(29), 6925 (2001)
  48. Masalova I, Ya Malkin A, Colloid J., 69(2), 185 (2007)
  49. Pal R, AIChE J., 42(11), 3181 (1996)
  50. Chen CC, Lee CJ, Chem. Eng. Sci., 42(1), 83 (1987)