화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.104, 286-294, December, 2021
Rice straw (Oryza sativa L.) biomass conversion to furfural, 5-hydroxymethylfurfural, lignin and bio-char: A comprehensive solution
E-mail:
A sustainable, easy to operate, scalable, and chemically pre-treatments free method has been explored for rice straw (RS) biomass conversion to furfural, 5-hydroxymethylfurfural (5-HMF), lignin and bio-char production. Initially, the RS was dipped into liquid nitrogen in a thermos flask and grinded easily to fine powder for better handling of biomass under reaction conditions in a reactor. The process also reduces the volume of biomass and enhances the surface area of RS biomass which was further analysed by SEM, TEM, IR, TGA and DSC, and further validated by its fruitful conversion to furfural, 5-HMF, lignin and bio-char synthesis in satisfied yields. The developed acidic process was performed at 130 °C for 6 hrs under a closed reaction system in reflux conditions. The ultra-performance liquid chromatography (UPLC) purity of furfural and 5-HMF was measured to >90% without additional purification technique. Moreover, the method was also examined in 250-gram scale and found to perform well.
  1. Food and Agriculture Organization of the United Nations, Rice Market Monitor, FAO, Washington, DC, 2017.
  2. Devi S, Gupta C, Jat SL, Parmar MS, Open Agriculture, 2, 486 (2017)
  3. Jain N, Bhatia A, Pathak H, 2013 Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute; New Delhi, India.
  4. Chiranjeevi T, Mattam AJ, Vishwakarma KK, Uma A, Peddy VCR, Gandham S, Velankar HR, ACS Sustainable Chem. Eng., 6, 8762 (2018)
  5. A] Abraham A, et al., Bioresour. Technol., 215, 29 (2016); B] Chieng S, Kuan SH, Biomass Conversion and Biorefinery, 2020.
  6. (a) Sorn V, et al., Bioresour. Technol., 293, 121929 (2019); (b) Chen X, et al., Carbohydr. Polym., 85, 245 (2011); (c) Zhang J, et al., ACS Sustain. Chem. Eng., 3, 293 (2015); (d) Grojzdek EJ, et al., Sci. Rep., 10, 11037 (2020); (e) Jasiukaityte-Grojzdek E, et al., ACS Sustain. Chem. Eng., 8, 17475 (2020); (f) Bjelic A, et al., Rev. Chem. Eng., 1, 20190077 (2020); (g) Chen H, et al., Renew. Sustain. Energy Rev., 147, 111217 (2021); (h) Fidio ND, et al., New J. Chem., 45, 9647 (2021); (i) Khaleghian H, et al., Ind. Eng. Chem. Res., 56, 9793 (2017).
  7. (a) Li F, et al., Plant Biotechnol J., 15, 1093 (2017); (b) Kapoor M, et al., Bioresour. Technol., 224, 688 (2017); (c) Agrawal R, et al., Bioresour. Technol., 224, 411 (2017); (d) Foston M, et al., Green Chem., 18, 608 (2016).
  8. Zhu SD, Huang WJ, Huang WX, Wang K, Chen QM, Wu YX, Appl. Energy, 154, 190 (2015)
  9. Hsu TC, Guo GL, Chen WH, Hwang WS, Bioresour. Technol., 101(13), 4907 (2010)
  10. Zhang Q, Tan X, Wang W, Yu Q, Chen X, Miao C, Guo Y, Zhang Y, Zhuang X, Sun Y, Kong X, Yuan Z, ACS Sustainable Chem. Eng., 8, 7649 (2020)
  11. Jin S, Chen H, Biochem. Eng. J., 30, 225 (2006)
  12. Bak JS, Ko JK, Han YH, Lee BC, Choi IG, Kim KH, Bioresour. Technol., 100(3), 1285 (2009)
  13. Kitchaiya P, Intanakul P, Krairish M, J. Wood Chem. Technol., 23, 217 (2003)
  14. Jamshid MR, Alireza T, Pejman RC, Iran. Polym. J., 14, 223 (2005)
  15. Kumar AK, Sharma S, Bioresour. Bioprocess., 4 (2017)
  16. Yarbrough JM, Mittal A, Mansfield E, et al., Biotechnol. Biofuels, 8, 214 (2015)
  17. Zhu SD, Huang WJ, Huang WX, Wang K, Chen QM, Wu YX, Appl. Energy, 154, 190 (2015)
  18. Bariani M, Boix E, Cassella F, Cabrera MN, Biomass Convers. Biorefin. (2020).
  19. Zhang ZH, Zhao ZBK, Bioresour. Technol., 101(3), 1111 (2010)
  20. Hoang PH, Dat NM, Cuong TD, Tung DT, RSC Adv., 10, 13489 (2020)
  21. Chen H, Qin L, Yu B, Biomass Bioenergy, 73, 77 (2015)
  22. Howard JL, Cao Q, Browne DL, Chem. Sci., 9, 3080 (2018)
  23. (a) Beillard A, et al., Chem. Sci., 8, 1086 (2017); (b) Hermann GN, et al., Angew. Chem., Int. Ed., 55, 3781 (2016); (c) Belenguer AM, et al., Chem. Sci., 2, 696 (2011).
  24. (a) Schuth F, et al., Catal. Today, 234, 24 (2014); (b) Hick SM, et al., Green Chem., 12,, 468 (2010).
  25. Meine N, Rinaldi R, Schuth F, ChemSusChem, 5, 1449 (2012)
  26. (a) Kumar A, et al., Cellulose, 28, 3967 (2021); (b) IN, 201811023331, 2018; WO, 2019244166, 2019; US, 17/254,959; EP, 19821739.0; RU, 2020142264, 2020; CN, CN112543754; (c) IN, 202011007068, 2019; (d) Chauhan AS, et al., Org. Process Res. Dev., 25, 892 (2021).
  27. (a) Azubuike CP, Okhamafe AO, Int. J. Recycl. Org. Waste Agric., 1, 9 (2012); (b) Nandanwar RA, et al., J. Chem. Bio. Phy. Sci. Sec., 6, 501 (2016); (c) Yuan Z, et al., Nordic Pulp Paper Res. J., 32, 4 (2017).
  28. (a) Flores-Velazqueza V, et al., Fuel, 265, 116857 (2020); (b) Yang H, et al., Fuel, 86, 1781 (2007).
  29. Chen X, Yu J, Zhang Z, Lu C, Carbohydr. Polym., 85, 245 (2011)
  30. Bikiaris D, Thermochim. Acta, 523(1-2), 25 (2011)
  31. Brys A, Brys J, Za E, Kaleta OLA, Gornicki K, Głowacki S, Koczon P, J. Therm. Anal. Calorim., 126, 27 (2016)
  32. (a) Thakur M, et al., Mater. Sci. Energy Technol., 3, 328 (2020); (b) Xiao B, et al., Polym. Degrad. Stab., 74, 307 (2001); (c) De S, et al., Int. J. Biol. Macromol., 145, 795 (2020).
  33. Official Methods of Analysis of Association of Official Analytical Chemists International, AOAC International, Washington DC, 17th Edn., 2010.