화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.104, 445-457, December, 2021
Analysis on growth mechanism of TiO2 nanorod structures on FTO glass in hydrothermal process
E-mail:
Understanding the growth mechanism of TiO2 nanorods (TNRs) is critical for producing highperformance materials with morphology and structure control. TNRs on FTO glass were prepared by hydrothermal method in acidic solution. The structural and morphological characteristics of thin films were investigated for different temperatures and reaction times. By the hydrolysis and protonation, monomers Ti(OH)n(OH2)6-n](4-n)+ can be formed at ambient conditions. TNRs were formed through the bonding between these monomers by olation and oxolation reactions during hydrothermal process. During the hydrothermal growth of TNRs on FTO glass, precursors of TNRs and nanoflowers were observed in the reactive solution and on top of TNR thin films. The preferential deposition of precursors and TiO2 nanostructures on top of primary TNRs from solution resulted in significant changes in their morphology, structure, and growth orientation. A new possible growth mechanism of TNRs is proposed based on these experimental observations. Our preliminary results show positive signs to apply the prepared TNRs as electron transfer layer of perovskite solar cells (PSCs). This study will become the basis for our further researches to apply the prepared TNR thin films with the most suitable structural and morphological properties to high-performance PSCs as well as other photovoltaic devices.
  1. Cui Y, Zhong Z, Wang D, Wang WU, Lieber CM, Nano Lett., 3, 149 (2003)
  2. Wrede S, Tian H, Phys. Chem. Chem. Phys., 22, 13850 (2020)
  3. Wang ZW, Nayak PK, Caraveo-Frescas JA, Alshareef HN, Adv. Mater., 28(20), 3831 (2016)
  4. Pawar M, Sendo-dular ST, Gouma P, J. Nanomater. (2018).
  5. Moma J, Baloyi J, Photocatal. - Appl. Attrib. (2019).
  6. Etgar L, Gao P, Xue ZS, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Gratzel M, J. Am. Chem. Soc., 134(42), 17396 (2012)
  7. Lee SY, Park SJ, J. Ind. Eng. Chem., 19(6), 1761 (2013)
  8. Panda SK, Yoon Y, Jung HS, Yoon WS, Shin H, J. Power Sources, 204, 162 (2012)
  9. Li Z, Lai X, Wang H, Mao D, Xing C, Wang D, Nanotechnology, 20 (2009)
  10. Qi K, Cheng B, Yu J, Ho W, Cuihua Xuebao/Chinese J. Catal., 38, 1936 (2017).
  11. Mohammed NM, Bashiri R, Sufian S, Kait CF, Majidai S, Titan. Dioxide - Mater. a Sustain. Environ., (2018).
  12. Yang J, Yang S, Xie Z, Li X, Zhou W, Zhang X, Fang Y, Zhang S, Peng F, J. Solid State Electrochem., 21, 455 (2017)
  13. Liao JY, Lei BX, Chen HY, Kuang DB, Su CY, Energy Environ. Sci., 5, 5750 (2012)
  14. Ohsaki Y, Masaki N, Kitamura T, Wada T, Okamoto T, Sekino T, Niihara K, Yanagida S, Phys. Chem. Chem. Phys., 7, 4157 (2005)
  15. Thakur UK, Askar AM, Kisslinger R, Wiltshire BD, Kar P, Shankar K, Nanotechnology., 28 (2017)
  16. Li X, Dai SM, Zhu P, Deng LL, Xie SY, Cui Q, Chen H, Wang N, Lin H, ACS Appl. Mater. Interfaces, 8, 21358 (2016)
  17. Kim HS, Lee JW, Yantara N, Boix PP, Kulkarni SA, Mhaisalkar S, Gratzel M, Park NG, Nano Lett., 13, 2412 (2013)
  18. Nam SH, Ju DW, Boo JH, J. Nanosci. Nanotechnol., 14, 9406 (2014)
  19. Jitputti J, Suzuki Y, Yoshikawa S, Catal. Commun., 9, 1265 (2008)
  20. Takahashi M, Handb. Sol-Gel Sci. Technol., Springer International Publishing (2016).
  21. Kmentova H, Kment S, Wang LY, Pausoya S, Vaclayu T, Kuzel R, Han H, Hubicka Z, Zlamal M, Olejnicek J, Cada M, Krysa J, Zboril R, Catal. Today, 287, 130 (2017)
  22. Pradhan SK, Reucroft PJ, Yang F, Dozier A, J. Cryst. Growth., 256, 83 (2003)
  23. Attar AS, Ghamsari MS, Hajiesmaeilbaigi F, Mirdamadi S, Katagiri K, Koumoto K, J. Mater. Sci., 43(17), 5924 (2008)
  24. Shao F, Sun J, Gao L, chen J, Yang S, RSC Adv., 4, 7805 (2014)
  25. Yang Z, Wang B, Cui H, An H, Pan Y, Zhai J, J. Phys. Chem. C, 119, 16905 (2015)
  26. Iraj M, Nayeri FD, Asl-Soleimani E, Narimani K, J. Alloy. Compd., 659, 44 (2016)
  27. Ahmad MK, Mohan VM, Murakami K, J. Sol-Gel Sci. Technol., 73, 655 (2015)
  28. Wu WQ, Lei BX, Rao HS, Xu YF, Wang YF, Su CY, Kuang DB, Sci. Rep., 3, 1 (2013)
  29. Ravi V, Bojarajan AK, Vaithiyanathan V, Chinnadurai R, Kasinathan K, Gopal R, Int. J. Chem. Mater. Res., 7, 1 (2019)
  30. Shaislamov U, Yang BL, Int. J. Hydrog. Energy, 38(33), 14180 (2013)
  31. Meng X, Shin DW, Yu SM, Park MH, Yang C, Lee JH, Yoo JB, J. Nanosci. Nanotechnol., 14, 8839 (2014)
  32. Sadhu S, Jaiswal A, Adyanthaya S, Poddar P, RSC Adv., 3, 1933 (2013)
  33. Mokhtar SM, Ahmad MK, Harish S, Hamed NKA, Shimomura M, CrystEngComm., 22, 2380 (2020)
  34. Prathan A, Sanglao J, Wang T, Bhoomanee C, Ruankham P, Gardchareon A, Wongratanaphisan D, Sci. Rep., 10, 1 (2020)
  35. Sui MR, Han CP, Gu XQ, Wang Y, Tang L, H. Optoelectron. Lett., 12, 161 (2016)
  36. Livage J, Henry M, Sanchez C, Prog. Solid State Chem., 18, 259 (1988)
  37. Yahaya MZ, Azam MA, Teridi MAM, Singh PK, Mohamad AA, Recent Appl. Sol-Gel Synth., InTech, (2017).
  38. Jordan V, Javornik U, Plavec J, Podgornik A, Recnik A, Sci. Rep., 6, 1 (2016)
  39. Gopal M, Chan WJ, Dejonghe LC, J. Mater. Sci., 32(22), 6001 (1997)
  40. Ardon M, Bino A, Burdett JK, Engels S, Structure and Bonding, Vol. 65 Solid State Chemistry, Springer Berlin Heidelberg: Berlin, Heidelberg (1987).
  41. Zhang J, Sun P, Jiang P, Guo Z, Liu W, Lu Q, Cao W, J. Mater. Chem. C, 7, 5764 (2019)
  42. Ding JR, Kim KS, Chem. Eng. J., 375 (2019)
  43. Ding JR, Kim KS, Chem. Eng. J., 300, 47 (2016)
  44. Ding JR, Yoon SH, Shi WD, Kim KS, AIChE J., 65(4), 1138 (2019)