화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.105, No.9, 3745-3757, 2021
Metabolomic analyses revealed multifaceted effects of hexanal on Aspergillus flavus growth
Hexanal, a natural volatile organic compound, exerts antifungal activity against Aspergillus flavus; however, the mechanisms underlying these effects are unclear. In this study, we found that the growth of A. flavus mycelium was completely inhibited following exposure to 0.4 mu L/mL hexanal (minimal inhibitory concentration). A detailed metabolomics survey was performed to identify changes in metabolite production by A. flavus cells after exposure to 1/2 the minimal inhibitory concentration of hexanal for 6 h, which revealed significant differences in 70 metabolites, including 20 upregulated and 50 downregulated metabolites. Among them, levels of l-malic acid, alpha-linolenic acid, phosphatidylcholine, d-ribose, riboflavin, d-mannitol, d-sorbitol, and deoxyinosine were significantly reduced. The metabolomics results suggest that the metabolites are mainly involved in the tricarboxylic acid cycle (TCA), ABC transport system, and membrane synthesis in A. flavus cells. Hexanal treatment reduced succinate dehydrogenase and mitochondrial dehydrogenase activity and stimulated superoxide anion and hydrogen peroxide accumulation in A. flavus mycelia. Increases in the electric conductivity and A(260nm) of the culture supernatant indicated cell membrane leakage. Therefore, hexanal appears to disrupt cell membrane synthesis, induce mitochondrial dysfunction, and increase oxidative stress in A. flavus mycelia.