화학공학소재연구정보센터
Polymer(Korea), Vol.45, No.6, 857-864, November, 2021
새로운 Silane 모노머와 IPN 중합체의 경화 연구
Curing Study of the New Silane Monomers and Their IPNs
E-mail:
Interpenetrating polymer networks (IPNs) that have silane resins as one of their components are industrially important due to their physical and chemical properties. The current study included preparation and characterization of two types of unsaturated silane monomers in order to prepare new types of IPNs with unsaturated polyesters (palatal). These monomers were characterized with Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H NMR), and their molecular weights were determined by cryoscopy technique. The curing properties of the silane monomers and the IPNs were observed by differential scanning calorimetry (DSC), and several of thermal curing functions were determined, such as the initial curing temperature, optimum curing temperature, curing energy, activation energy and rate of curing. There was a significant decrease in the initial and maximum curing temperatures compared with the unsaturated polyester resin (palatal) due to the decrease in the activation energy from 105.4 to 77.3 °C when the allyoxy silane monomer percentage was shifted from 5 to 20%. Meanwhile, the activation energy for the IPNs based on α-methyl-butenoxy silane decreased from 96.8 to 55.8 kJ/mol.
  1. Polymer Blends Handbook; Kluwer Academic Publishers: Dordrecht, 2002.
  2. Sperling LH, Mishra VBAT, Polym. Adv. Technol., 7, 197 (1996)
  3. Horak Z, et al., Encyclopedia of Polymer Science and Technology; John Wiley & Sons: New York, pp1, 2005.
  4. Panteli PA, Patrickios CS, Gels, 5, 36 (2019)
  5. Kamal M, Indian J. Chem. Technol., 18(4), 284 (2011)
  6. Shahrousvand M, Ghollasi M, Zarchi AAK, Salimi A, Int. J. Biol. Macromol., 138, 262 (2019)
  7. De Lima GG, Elter JK, Chee BS, et al., Biomed. Mater., 14, 054101 (2019)
  8. Fan HL, Gong JP, Macromolecules, 53(8), 2769 (2020)
  9. Goczkowski M, Gobin M, Hindie M, Agniel R, Larreta-Garde V, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 104, 109931 (2019)
  10. Khan J, et al., Interpenetrating Polymer Network: Biomedical Applications; Springer: Singapore, pp289, 2020.
  11. Krishnamoorthy S, Zhang Z, Xu C, J. Biomater. Appl., 33, 1105 (2019)
  12. Chen CH, Chen MH, J. Appl. Polym. Sci., 100(1), 323 (2006)
  13. Myung D, Waters D, Wiseman M, Duhamel PE, Noolandi J, Ta CN, Frank CW, Polym. Adv. Technol., 19, 647 (2008)
  14. Dave PN, Khosla E, Unsaturated Polyester Resins Elsevier: Cambridge, pp153 2019.
  15. Chivukula P, Dusek K, Wang D, Duskova-Smrckova M, Kopeckova P, Kopecek J, Biomaterials, 27, 1140 (2006)
  16. Sperling LH, Encyclopedia of Polymer Science and Technology; John Wiley & Sons: New York, pp272, 2004.
  17. Goujon LJ, Khaldi A, Maziz A, Plesse C, Nguyen GTM, Aubert PH, Vidal F, Chevrot C, Teyssie D, Macromolecules, 44(24), 9683 (2011)
  18. Kaczmarek H, Vukovi?Kwiatkowska I, Exp. Polym. Lett., 6, 78 (2018)
  19. Myung D, Waters D, Wiseman M, Duhamel PE, Noolandi J, Ta CN, Frank CW, Polym. Adv. Technol., 19, 647 (2008)
  20. Wang JJ, Liu F, Polym. Bull., 70(4), 1415 (2013)
  21. Apopei DF, Dragan ES, J. Nanostruct. Polym. Nanocompos., 9, 16 (2013)
  22. Dragan ES, Apopei DF, Carbohydr. Polym., 92, 23 (2013)
  23. Dragan ES, Loghin DFA, Chem. Eng. J., 234, 211 (2013)
  24. Dinu MV, Perju MM, Dragan ES, React. Funct. Polym., 71(8), 881 (2011)
  25. Dinu MV, Schwarz S, Dinu IA, Dragan ES, Colloid Polym. Sci., 290, 1647 (2012)
  26. Chirila TV, George KA, Abdul Ghafor WA, Pas SJ, Hill AJ, J. Appl. Polym. Sci., 126, E455 (2012)
  27. Lee Y, Kim DN, Choi D, Lee W, Park J, Koh WG, Polym. Adv. Technol., 19, 852 (2008)
  28. Liu YY, Lu J, Shao YH, Macromol. Biosci., 6, 452 (2006)
  29. Lin MS, Liu CC, Lee CT, J. Appl. Polym. Sci., 72(4), 585 (1999)
  30. Guhanathan S, Hariharan R, Sarojadevi M, J. Appl. Polym. Sci., 92(2), 817 (2004)
  31. Chung JW, Park JH, Choi HM, Oh KW, Text. Res. J., 89, 335 (2019)
  32. Fan HL, Gong JP, Macromolecules, 53(8), 2769 (2020)
  33. Haddrick M, Simpson PB, Drug Discov. Today, 24, 1217 (2019)
  34. Hoffman T, Khademhosseini A, Langer R, Tissue Eng. Part A, 25, 679 (2019)
  35. Che Y, Li D, Liu Y, Yue Z, Zhao J, Ma Q, Zhang Q, Tan Y, Yue Q, Meng F, J. Polym. Res., 25, 169 (2018)
  36. Zoratto N, Matricardi P, Polymeric Gels, Woodhead Publishing: Cambridge, pp91, 2018.
  37. Park SH, Shin HS, PArk SNA, Carbohydr. Polym., 200, 341 (2018)
  38. Mahou R, Vlahos AE, Shulman A, Sefton MV, ACS Biomater. Sci. Eng., 4, 3704 (2017)
  39. Soni SR, Bhunia BK, Kumari N, Dan S, Mukherjee S, Mandal BB, Ghosh A, ACS Omega, 3, 11993 (2018)
  40. Ji WG, Hu JM, Liu L, Zhang JG, Cao CN, Prog. Org. Coat., 57, 439 (2006)
  41. Montemor MF, Ferreira MGS, Electrochim. Acta, 52(27), 7486 (2007)
  42. Qian M, Soutar AM, Tan XH, Zeng MT, Wijesinghe SL, Thin Solid Films, 517(17), 5237 (2009)
  43. Abe Y, Gunji T, Prog. Polym. Sci., 29, 149 (2004)
  44. Chauhan BPS, Balagam B, Macromolecules, 39(6), 2010 (2006)
  45. Chen YB, Kim H, React. Funct. Polym., 68(11), 1499 (2008)