화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.33, No.4, 343-355, November, 2021
Particle trajectory and orientation evolution of ellipsoidal particles in bounded shear flow of Giesekus fluids
E-mail:
The migration of ellipsoidal particles in bounded shear flow of Giesekus fluids is studied numerically using the direct forcing/fictitious domain method for the Weissenberg number ranging from 0.1 to 3.0, the mobility parameter α which quantifies the shear-thinning effect ranging from 0.1 to 0.7. The model and numerical method are validated by comparing the present results with available theoretical and numerical results in other literatures. The results show that the trajectory of particles depends on their initial orientation and vertical position, and the particle migration can be roughly classified into returning and passing pattern. The values of initial vertical position of particle corresponding to the separatrix between the returning and passing pattern decrease with increasing Weissenberg number regardless of the initial orientation of particle, and the shear thinning has the opposite effect. The evolution of particle orientation depends on the initial particle orientation. For the particles whose initial orientation is parallel to the shear plane, the particle rotates with the semi-major axis as radius in the shear plane. For the particles whose initial orientation is perpendicular to the shear plane, the particle rotates with the semi-minor axis as radius. For the particles whose initial orientation has a certain angle with the shear plane, the particle rotates with the vorticity axis and the orientation vector is gradually close to the vorticity vector. The evolution of the particle orientation becomes slow with increasing Wi whether it is in passing behavior or in returning behavior.
  1. Anczurowski E, Mason SG, Trans. Soc. Rheol., 12, 209 (1968)
  2. Choi YJ, Hulsen MA, Meijer HEH, J. Non-Newton. Fluid Mech., 165(11-12), 607 (2010)
  3. Crowe CT, Sommerfield M, Tsuji Y, Multiphase Flows with Droplets and Particles, CRC Press 2011.
  4. D'Avino G, Maffettone PL, J. Non-Newton. Fluid Mech., 215, 80 (2015)
  5. D'Avino G, Greco F, Maffettone PL, Rheol. Acta, 54(11-12), 915 (2015)
  6. D’Avino G, Greco F, Maffettone PL, Annu. Rev. Fluid Mech., 49, 341 (2017)
  7. D’Avino G, Hulsen MA, Greco F, Mafettone PL, Phys Rev E., 89, 043006 (2014)
  8. Jeffery GB, Proc R Soc Ser A., 102, 161 (1922)
  9. Kang AR, Ahn SW, Lee SJ, Lee B, Lee SS, Kim JM, Korea-Aust. Rheol. J., 23, 247 (2011)
  10. Kang HU, Kim WG, Kim SH, Korea-Aust. Rheol. J., 19(3), 99 (2007)
  11. Liu B, Lin J, Ku X, Yu Z, J. Non-Newton. Fluid Mech., 276, 104233 (2020)
  12. Mutlu BR, Edd JF, Toner M, Proc. Nat. Acad. Sci. U.S.A., 115, 7682 (2018)
  13. Mutlu BR, Smith KC, Edd JF, et al., Sci. Rep., 7, 9915 (2017)
  14. Pan TW, Guo A, Chiu SH, Glowinski R, J. Comput. Phys., 352, 410 (2018)
  15. Rapaport DC, The Art of Molecular Dynamics Simulation, Cambridge University Press 1995.
  16. Snijkers F, Pasquino R, Vermant J, Langmuir, 29(19), 5701 (2013)
  17. Vazquez-Quesada A, Ellero M, Phys. Fluids, 29, 121609 (2017)
  18. Wang X, Gao H, Dindic N, et al., Biomicrofluidics., 11, 014107 (2017)
  19. Wang Y, Yu Z, Lin J, Microfluid. Nanofluid., 23, 89 (2019)
  20. Warkiani ME, Tay AKP, Guan G, Han J, Scientific. Reports., 5, 11018 (2015)
  21. Warkiani ME, Khoo BL, Wu L, et al., Nature. Protocols., 11, 134.13 (2016)
  22. Yoo J, Kim C, Korea-Aust. Rheol. J., 26(2), 177 (2014)
  23. Yoon S, Walkley MA, Harlen OG, J. Non-Newton. Fluid Mech., 185-186, 39 (2012)
  24. Yu ZS, Wachs A, J. Non-Newton. Fluid Mech., 145(2-3), 78 (2007)
  25. Yu Z, Shao X, J. Comput. Phys., 227, 292 (2007)