화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.33, No.4, 367-391, November, 2021
Hall and ion-slip currents’ role in transportation dynamics of ionic Casson hybrid nano-liquid in a microchannel via electroosmosis and peristalsis
E-mail:
This article intends to conduct an analytical simulation for the electroosmosis modulated peristaltic transport of ionic hybrid nano-liquid with Casson model through a symmetric vertical microchannel occupying a homogeneous porous material in the existence of the dominant magnetic field, Hall, and ion-slip currents. The hybrid nano-liquid is acquired by the suspension of silver and silicon dioxide nanoparticles into pure water. The wall slip and convective heating impacts are imposed. The Casson fluid (CF) model is adopted to mimic the rheological behaviour accounting for hybrid nano-liquid. Darcy’s law is applied to evaluate the impact of a porous medium. The Poisson-Boltzmann equation is engaged to accommodate the electric double layer (EDL) in the microchannel. Assumptions of low Reynolds number (LRN), long wavelength (LWL), and Debye-Huckel linearization (DHL) are undertaken to simplify the normalized constitutive equations. Closed-form solutions for the linearized dimensionless resulting equations are achieved by ND-solve code in Mathematica. For a comprehensive physical investigation of the problem under simulation, several graphs are furnished to evaluate the role of emerging thermal and physical parameters in developing the flow patterns and thermal characteristics. Outcomes envisage that Hall, ion-slip, and electro-osmotic parameters have a marked impact on the velocity of the ionic liquid. A decrement in the EDL thickness corresponds to an augmentation in the axial velocity profile in the locality of the channel walls. An increment in radiation parameter results in a demotion in the temperature profile. The pressure gradient is elevated with higher Hall and ion-slip parameters, thermal Grashof number, and electro-osmotic parameter, whereas it is dropped due to higher estimates of Hartmann number. The trapping phenomena under the flow factors are also outlined in brief. The bolus formation is deeply affected by Hall, ion-slip, and electro-osmotic parameters. Outcomes achieved here are expected to shed light on the design and analysis of electroosmotic pumps, microchannel devices, water filtration and purification processes, DNA analyzers, nanoscale electro-fluid thruster designs in-space propulsion, and many more.
  1. Abbasi FM, Shanakhat I, Shehzad SA, J. Magn. Magn. Mater., 474, 434 (2019)
  2. Abbasi FM, Hayat T, Ahmad B, J. Mol. Liq., 207, 248 (2015)
  3. Abo-Eldahab EM, Barakat EI, Nowar KI, Int. J. Appl. Math. Phys., 2, 145 (2010)
  4. Abo-Elkhair RE, Mekheimer KS, Moawed MA, Iran J. Sci. Technol. Sci., 43, 201 (2019)
  5. Akbar NS, J. Magn. Magn. Mater., 378, 463 (2015)
  6. Akbar NS, Huda AB, Tripathi D, Eur. Phys. J. Plus, 131, 332 (2016)
  7. Akram J, Akbar NS, Maraj EN, Alex. Eng. J., 59, 943 (2020)
  8. Akram J, Akbar NS, Tripathi D, J. Therm. Anal. Calorim., 2021.
  9. Akram J, Akbar NS, Tripathi D, Appl. Nanosci., 10, 4161 (2020)
  10. Ali A, Saleem S, Mumraiz S, Saleem A, Awais M, Marwat DNK, J. Therm. Anal. Calorim., 143, 1985 (2021)
  11. Asghar S, Hussain Q, Hayat T, Alsaadi F, Appl. Math. Mech., 35, 1509 (2014)
  12. Asha SK, Sunitha G, Case Studies Therm. Eng., 17, 100560 (2020)
  13. Beg OA, Ali N, Zaman A, Beg ET, Sohail A, J. Taiwan Inst. Chem. Eng., 66, 258 (2016)
  14. Berli CLA, Olivares ML, J. Colloid Interface Sci., 320(2), 582 (2008)
  15. Borges ME, Sierra M, Cuevas E, Garcia RD, Esparza P, Sol. Energy, 135, 527 (2016)
  16. Casson N, A flow equation for the pigment oil suspensions of the printing ink type, in: Rheology of Disperse systems, 1959.
  17. Chaube MK, Yadav A, Tripathi D, Beg OA, Korea Aust. Rheol. J., 30, 89 (2018)
  18. Choi SUS, ASME J Heat Transf., 66, 99 (1995)
  19. Cowling TG, Magnetohydrodynamics, 1957.
  20. Darcy H, Les fontaines publiques de la ville de Dijon, 1856.
  21. Du M, Tang GH, Sol. Energy, 122, 864 (2015)
  22. Eldabe NT, Elogail MA, Elshaboury SM, Hasan AA, Appl. Math. Model., 40, 315 (2016)
  23. Eldesoky IM, Mousa AA, Int. J. Biomath., 3, 25575 (2010)
  24. Ellahi R, Sait SM, Shehzad N, Ayaz Z, Int. J. Numer. Method H., 30, 834 (2019)
  25. Farooq S, Hayat T, Ahmad B, Therm. Sci., 23, 3351 (2019)
  26. Hayat T, Abbasi FM, Alsaedi A, Alsaadi F, Z. Naturforsch., 69a, 43 (2014)
  27. Hayat T, Zahir H, Tanveer A, Alsaedi A, J. Magn. Magn. Mater., 407, 321 (2016)
  28. Hayat T, Rafiq M, Alsaedi A, Int. J. Thermal Sci., 112, 129 (2017)
  29. Hayat T, Shafique M, Tanveer A, Alsaedi A, J. Magn. Magn. Mater., 407, 51 (2016)
  30. Hayat T, Ali N, Asghar S, Phys. Lett. A, 363, 397 (2007)
  31. Hayat T, Asghar S, Tanveer A, Alsaedi A, Neural Comput. Applic., 31, 117 (2019)
  32. Jayavel P, Jhorar R, Tripathi D, Azese MN, J. Braz. Soc. Mech. Sci. Eng., 41, 61 (2019)
  33. Kattamreddy VR, Makinde OD, Reddy MG, Indian J. Phys., 92, 1439 (2018)
  34. Kirby BJ, Hasselbrink EF, Electrophoresis, 25(2), 203 (2004)
  35. Latham TM, Fluid motion in a peristaltic pump, 1966.
  36. Minea AA, Int. J. Heat Mass Transf., 104, 852 (2017)
  37. Moatimid GM, Mohamed MA, Hassan MA, El-Dakaoky EM, Pramana - J. Phys., 92, 1 (2019)
  38. Nadeem S, Kiani MN, Saleem A, Issakhov A, Electrophoresis, 21, 1198 (2020)
  39. Narla VK, Tripathi D, Beg OA, Therm. Sci. Eng. Prog., 15, 100424 (2020)
  40. Noreen S, Quratulain, Tripathi D, Therm. Sc i. Eng. Prog., 11, 254 (2019)
  41. Noreen S, Waheed S, Lu DC, Hussanan A, Eur. J. Mech. B Fluids, 85, 458 (2021)
  42. Prakash J, Sharma A, Tripathi D, J. Mol. Liq., 249, 843 (2018)
  43. Prakash J, Sharma A, Tripathi D, Pramana- J. Phys., 94, Article No.4, 2020.
  44. Prakash J, Yadav A, Tripathi D, Tiwari AK, Eur. Phys. J. Plus, 134, 81 (2019)
  45. Prakash J, Tripathi D, J. Mol. Liq., 256, 352 (2018)
  46. Prakash J, Tripathi D, Beg OA, Appl. Nanosci., 10, 1693 (2020)
  47. Prakash J, Tripathi D, Korea-Aust. Rheol. J., 32(4), 271 (2020)
  48. Prakash J, Siva EP, Tripathi D, Beg OA, Heat Transfer-Asian Res., 48, 2882 (2019)
  49. Prakash J, Siva EP, Tripathi D, Beg OA, Heat Trans.-Asian Res., 48, 2882 (2019)
  50. Prakash J, Jhorar R, Tripathi D, Azese MN, J. Braz. Soc. Mech. Sci. Eng., 41, 61 (2019)
  51. Ramesh K, J. Mol. Liq., 219, 256 (2016)
  52. Ramesh K, Prakash J, J. Therm. Anal. Calorim., 138, 1311 (2019)
  53. Ranjit NK, Tripathi D, Shit GC, Int. J. Mech. Sci., 153, 430 (2019)
  54. Reuss FF, Proc. Imp. Soc. Nat. Moscow., 3, 327 (1809)
  55. Sadaf H, Iftikhar N, Akbar NS, Eur. Phys. J. Plus, 134, 232 (2019)
  56. Sadek SH, Pinho FT, J. Nonnewton Fluid Mech., 266, 46 (2019)
  57. Said Z, Sajid M, Saidur R, Kamalisarvestani M, Rahim N, Int. Commun. Heat Mass Transf., 46, 74 (2013)
  58. Sarkar J, Ghosh P, Adil A, Renew. Sust. Energ. Rev., 43, 164 (2015)
  59. Sharma A, Tripathi D, Sharma RK, Tiwari AK, Phys. A, 535, 122148 (2019)
  60. Shit GC, Mondal A, Sinha A, Kundu PK, Phys. A, 462, 1040 (2016)
  61. Shit GC, Ranjit NK, Sinha A, J. Bionic Eng., 13, 436 (2016)
  62. Slawinski P, Terry B, J. Med. Device., 8, 030901 (2011)
  63. Tanveer A, Malik MY, Ain Shams Eng. J., 12, 955 (2021)
  64. Tanveer A, Hayat T, Alsaedi A, Ahmad B, PLoS ONE., 12, e01700 (2017)
  65. Tripathi D, Sharma A, Beg OA, Adv. Powder Technol., 29(3), 639 (2018)
  66. Tripathi D, Prakash J, Beg OA, J. Therm. Sci. Eng. Appl., 202 2020.
  67. Tripathi D, Prakash J, Reddy MG, Kumar R, Indian J. Phys., 2020.
  68. Tripathi D, Prakash J, Reddy MG, Misra JC, J. Therm. Anal. Calorim., 143, 2499 (2021)
  69. Tripathi D, Jhorar R, Beg OA, Kadir A, J. Mol. Liq., 236, 358 (2017)
  70. Tripathi D, Bhushan S, Beg OA, Colloids Surf. A: Physicochem. Eng. Asp., 506, 32 (2016)
  71. Wiedemann G, Poggendorfs Annalen., 87, 321 1852.