- Previous Article
- Next Article
- Table of Contents
Korean Journal of Chemical Engineering, Vol.38, No.12, 2567-2573, December, 2021
Moisture-resistant and highly adhesive acrylate-based sealing materials embedded with oxime-based photoinitiators for hermetic optical devices
E-mail:
The hermetic sealing of optoelectronic devices has attracted much attention because it can endow the devices with long-term operation reliability and high mechanical resistance. Herein, we present a facile and efficacious strategy for fabrication of water-resistant and highly adhesive acrylate-based sealing materials for hermetic optical devices using oxime-based photoinitiators. Compared with conventional sealing materials containing ketone-based photoinitiator, those embedded with oxime-based photointiators afforded a strong UV absorption in the effective wavelength range, a high UV curing conversion of 99.5% at a low radiant energy of 1.0 J cm-2, a remarkable adhesion strength of 42.2 kgf cm-2, an improved water impermeability of 5.3 g m?2 day-1, and a reduced internal pollution length of 104.9 μm. These excellent properties of the fabricated sealing materials are attributed to the fragmentation mechanism of oxime-based photoinitiators which can generate numerous initiating radicals through multi-step decomposition reactions, resulting in the efficient initiation for photoreaction with acrylate resins. This study provides promising sealing materials based on the oxime-based photoinitiators for ultra-slim and flexible optoelectronic applications.
- Lee GD, Son JH, Choi YH, Lju JJ, Kim KH, Lee SH, Appl. Phys. Lett., 90, 033509 (2007)
- Marmaras N, Nathanael D, Zarboutis N, Int. J. Ind. Ergonom., 38, 584 (2008)
- Travis ARL, Appl. Opt., 29, 4341 (1990)
- Ni T, Schmidt GS, Staadt OG, Livingston MA, Ball R, May R, IEEE. VRIC., 223 (2006).
- Kim TH, Kim M, Manda R, Lim YJ, Cho KJ, Hee H, Kang JW, Lee GD, Lee SH, Curr. Opt. Photonics, 3, 66 (2019)
- Zhang Y, Sun J, Liu Y, Shang J, Liu H, Liu H, Gong X, Chigrinov V, Kowk HS, Appl. Phys. Lett., 112, 131902 (2018)
- Morri Y, Electron. Commun. Jpn., 83, 21 (2000)
- Lee JH, Polymers, 12, 2178 (2020)
- Hwang SH, Lee JH, Mol. Cryst. Liq. Cryst., 704(1), 97 (2020)
- Lee E, Cho CH, Son I, Kim JH, Yoo JY, Moon G, Lee JH, Mol. Cryst. Liq. Cryst., 687(1), 76 (2019)
- Hwang HD, Kim HJ, React. Funct. Polym., 71(6), 655 (2011)
- Park Y, Lim D, Kim H, Park D, Sung I, Int. J. Adhes. Adhes., 29, 710 (2009)
- Park Y, Kim H, Park D, Sung I, Eur. Polym. J., 46, 1642 (2010)
- Do H, Park J, Kim H, Eur. Polym. J., 44, 3871 (2008)
- Lee J, Shim G, Park J, Kim H, Han K, Int. J. Adhes. Adhes., 70, 249 (2016)
- Park CH, Lee SW, Park JW, Kim HJ, React. Funct. Polym., 73(4), 641 (2013)
- Decker C, Zahouily K, Keller L, Benfarhi S, Bendaikha T, Baron J, J. Mater. Sci., 37, 4831 (2002)
- Keller L, Decker C, Zahouily K, Benfarhi S, Le Meins JM, Miehe-Brendle J, Polymer, 45(22), 7437 (2004)
- Kayaman-Apohan N, Demirci R, Cakir M, Gungor A, Radiat. Phys. Chem., 73, 254 (2005)
- Tey JN, Soutar AM, Mhaisalkar SG, Yu H, Hew KM, Thin Solid Films, 504(1-2), 384 (2006)
- Li Y, Wong CP, Mater. Sci. Eng. R-Rep., 51, 1 (2006)
- Goss B, Int. J. Adhes. Adhes., 22, 405 (2002)
- Li T, Su Z, Xu H, Ma X, Yin J, Jiang X, Polym. Chem., 11, 1885 (2020)
- Hou HH, Gan YC, Yin J, Jiang XS, Langmuir, 33(8), 2027 (2017)
- Guo Y, Ji Z, Zhang Y, Wang X, Zhou F, J. Mater. Chem. A, 5, 16307 (2017)
- Fouassier JP, Allonas X, Burget D, Prog. Org. Coat., 47, 16 (2003)
- Moon JH, Shul YG, Han HS, Hong SY, Choi YS, Kim HT, Int. J. Adhes. Adhes., 25, 301 (2005)
- Dulay MT, Choi HN, Zare RN, J. Sep. Sci., 30, 2979 (2007)
- Dietliker K, Husler R, Birbaum JL, Ilg S, Villeneuve S, Studer K, Jung T, Benkhoff J, Kura H, Matsumoto A, Oka H, Prog. Org. Coat., 58, 146 (2007)
- Mizusaki M, Enomoto S, Liq. Cryst., 43, 1431 (2016)
- Nakanishi T, Takahashi T, Mada H, Saito S, Jpn. J. Appl. Phys., 41, 3752 (2002)
- Park Y, Kim H, Park D, Sung I, Eur. Polym. J., 46, 1642 (2010)
- Li T, Tsai J, Chang R, Ho L, Yang C, IEEE. Trans. Ind. Electron., 60, 3976 (2013)