Korean Journal of Materials Research, Vol.31, No.11, 619-625, November, 2021
Cu2ZnSn(S,Se)4(CZTSSe) 흡수층의 급속 열처리 공정 온도 미세 조절을 통한 특성 향상
Improvement in Performance of Cu2ZnSn(S,Se)4 Absorber Layer with Fine Temperature Control in Rapid Thermal Annealing System
E-mail:
Cu2ZnSn(S,Se)4 (CZTSSe) based thin-film solar cells have attracted growing attention because of their earthabundant and non-toxic elements. However, because of their large open-circuit voltage (Voc)-deficit, CZTSSe solar cells exhibit poor device performance compared to well-established Cu(In,Ga)(S,Se)2 (CIGS) and CdTe based solar cells. One of the main causes of this large Voc-deficit is poor absorber properties for example, high band tailing properties, defects, secondary phases, carrier recombination, etc. In particular, the fabrication of absorbers using physical methods results in poor surface morphology, such as pin-holes and voids. To overcome this problem and form large and homogeneous CZTSSe grains, CZTSSe based absorber layers are prepared by a sputtering technique with different RTA conditions. The temperature is varied from 510 °C to 540 °C during the rapid thermal annealing (RTA) process. Further, CZTSSe thin films are examined with X-ray diffraction, X-ray fluorescence, Raman spectroscopy, IPCE, Energy dispersive spectroscopy and Scanning electron microscopy techniques. The present work shows that Cu-based secondary phase formation can be suppressed in the CZTSSe absorber layer at an optimum RTA condition.
- Wang W, Winkler MT. Gunawan O, Gokmen T, Todorov TK, Zhu Y, Mitzi DB, Adv. Eng. Mater., 4, 130146 (2013)
- Siebentritt S, Schorr S, Prog. Photovolt.: Res. Appl., 20, 512 (2012)
- Nakazawa IK, Jpn. J. Appl. Phys., 27, 2094 (1988)
- Friedlmeier TM, et al., Proceedings of the 14th European Photovoltaic Solar Energy Conference (1997).
- NREL: Manufacturing Analysis - Supply Constraints Analysis. On the Web. Retrieved December 21, 2014 from https://www.nrel.gov/
- Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H, IEEE J. Photovolt., 9, 1863 (2019)
- Fthenakis V, Renew. Sust. Energ. Rev., 13, 2746 (2009)
- Siebentritt S, Thin Solid Films, 535, 1 (2013)
- Kumar M, Dubey A, Adhikari N, Venkatesan S, Qiao Q, Energ. Environ. Sci., 8, 3134 (2015)
- Schorr S, Gurieva G, Guc M, et al., J. Phys : Energy, 2, 012002 (2020)
- Chen S, Gong XG, Walsh A, Wei SH, Appl. Phys. Lett., 94, 041903 (2009)
- Kim JR, Kim GY, Nguyen TTT, et al., Phys. Chem. Chem. Phys., 22, 7597 (2020)
- Stanbery BJ, Crit. Rev. Solid State Mater. Sci., 27, 73 (2002)
- Yan C, Huang J, Sun K, et al., Nat. Energy, 3, 764 (2018)
- Rudisch K, Ren Y, Bjorkman CP, Scragg J, Appl. Phys. Lett., 108, 231902 (2016)
- Pawar SM, Inamdar AI, Pawar BS, et al., Mater. Lett., 118, 76 (2014)
- Temgoua S, Bodeux R, Naghavi N, Sol. Energy Mater. Sol. Cells, 172, 160 (2017)
- Scragg JJ, Watjen JT, Edoff M, Ericson T, Kubart T, Platzer-Bjorkman C, J. Am. Chem. Soc., 134(47), 19330 (2012)
- Son DH, Kim DH, Park SN, Yang KJ, Nam DH, Cheong HS, Kang JK, Chem. Mater., 27, 5180 (2015)
- Yin X, Tang C, Sun L, Shen Z, Gong H, Chem. Mater., 26, 2005 (2014)
- Marquez J, Neuschitzer M, Dimitrievska M, Gunder R, Haass S, Werner M, Romanyuk YE, Schorr S, Pearsall NM, Forbes I, Sol. Energy Mater. Sol. Cells, 144, 579 (2016)
- Amal MI, Lee SH, Kim KH, Curr. Appl. Phys., 14(7), 916 (2014)
- Shi L, Wang C, Wang J, Fang Z, Xing H, Adv. Mater. Phys. Chem., 6, 305 (2016)
- Raadik T, Grossberg M, Krustok J, Kauk-Kuusik M, Crovetto A, Ettlinger RB, Hanson O, Schou J, Appl. Phys. Lett., 110, 261105 (2017)