Korean Journal of Materials Research, Vol.31, No.11, 642-648, November, 2021
Al-Si-Mg-Cu 합금의 자동차 엔진 사용 온도에서 열처리 조건에 따른 열확산도 변화
Change in Thermal Diffusivity of Al-Si-Mg-Cu Alloy According to Heat Treatment Conditions at Automotive Engine Operating Temperature
E-mail:
The precipitation effect of Al-6%Si-0.4%Mg-0.9%Cu-(Ti) alloy (in wt.%) after various heat treatments was studied using a laser flash device (LFA) and differential scanning calorimetry (DSC). Solid solution treatment was performed at 535 °C for 6 h, followed by water cooling, and samples were artificially aged in air at 180 °C and 220 °C for 5 h. The titanium-free alloy Al-6%Si-0.4%Mg-0.9%Cu showed higher thermal diffusivity than did the Al-6%Si-0.4%Mg-0.9%Cu-0.2%Ti alloy over the entire temperature range. In the temperature ranges below 200 °C and above 300 oC, the value of thermal diffusivity decreased with increasing temperature. As the sample temperature increased between 200 °C and 400 °C, phase precipitation occurred. From the results of DSC analysis, the temperature dependence of the change in thermal diffusivity in the temperature range between 200 °C and 400 °C was strongly influenced by the precipitation of θ'-Al2Cu, β'-Mg2Si, and Si phases. The most important factor in the temperature dependence of thermal diffusivity was Si precipitation.
Keywords:Al-Si-Mg-Cu alloy;thermal diffusivity;thermal conductivity;aging heat treatment;precipitation
- Smallman RE, Bishop RJ, Modern Physical Metallurgy and Materials Engineering, 6th ed., p. 316, Oxford (1999).
- Jeong CY, Mater. Trans., 54, 588 (2013)
- Tavitas-Medrano FJ, Mohamed AMA, Gruzleski JE, Samuel FH, Doty HW, J. Mater. Sci., 45(3), 641 (2010)
- Aksoz S, Ocak Y, Maras N, Cadirli E, Kaya H, Boyuk U, Exp. Therm. Fluid Sci., 34, 1507 (2010)
- Lumley RN, Polmear IJ, Groot H, Ferrier J, Scr. Mater., 58, 1006 (2008)
- Lee EW, Oppenheim T, Robinson K, et al., Eng. Fail. Anal., 14, 1538 (2007)
- Kaschnitz E, Funk W, Pabel T, High Temp. High Press., 43, 175 (2014)
- Kaschnitz E, Ebner R, High Temp. High Press., 38, 221 (2009)
- Vandersluis E, Lombardi A, Ravindran C, Bois-Brochu A, Chiesa F, MacKay R, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 648, 401 (2015)
- Jeong C, Mater. Trans., 53, 234 (2012)
- Hamzwhei M, Rashidi M, Therm. Eng. Environ., 2006, 153 (2006)
- Tritt TM, Thermal Conductivity : p. 21, Kluwer Academic/Plenum, New York (2004).
- Grosselle F, Timelli G, Bonollo F, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 527, 3536 (2010)
- Chakrabarti DJ, Laughlin DE, Progr. Mater. Sci., 49, 389 (2004)
- Miao WF, Laughlin DE, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 31, 361 (2000)
- Chakrabarti DJ, Peng Y, Laughlin DE, Mater. Sci. Forum, 396-402, 857 (2002)
- Biswas A, Siegel DJ, Seidman DN, Acta Mater., 75, 322 (2014)
- Sjolander E, Seifeddine S, J. Mater. Process. Tech., 210, 1249 (2010)
- Lasagni F, Mingler B, Dumont M, Degischer HP, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 480, 383 (2008)
- Li RX, Li RD, Zhao YH, He LZ, Li CX, Guan HR, Hu ZQ, Mater. Lett., 58, 2096 (2004)
- Sjolander E, Seifeddine S, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 528, 7402 (2011)
- Mukhopadhyay AK, Yang QB, Singh SR, Acta Metall. Mater., 42, 3083 (1994)
- Abis S, Massazza M, Mengucci P, Riontino G, Scr. Mater., 45, 685 (2001)