화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.11, 642-648, November, 2021
Al-Si-Mg-Cu 합금의 자동차 엔진 사용 온도에서 열처리 조건에 따른 열확산도 변화
Change in Thermal Diffusivity of Al-Si-Mg-Cu Alloy According to Heat Treatment Conditions at Automotive Engine Operating Temperature
E-mail:
The precipitation effect of Al-6%Si-0.4%Mg-0.9%Cu-(Ti) alloy (in wt.%) after various heat treatments was studied using a laser flash device (LFA) and differential scanning calorimetry (DSC). Solid solution treatment was performed at 535 °C for 6 h, followed by water cooling, and samples were artificially aged in air at 180 °C and 220 °C for 5 h. The titanium-free alloy Al-6%Si-0.4%Mg-0.9%Cu showed higher thermal diffusivity than did the Al-6%Si-0.4%Mg-0.9%Cu-0.2%Ti alloy over the entire temperature range. In the temperature ranges below 200 °C and above 300 oC, the value of thermal diffusivity decreased with increasing temperature. As the sample temperature increased between 200 °C and 400 °C, phase precipitation occurred. From the results of DSC analysis, the temperature dependence of the change in thermal diffusivity in the temperature range between 200 °C and 400 °C was strongly influenced by the precipitation of θ'-Al2Cu, β'-Mg2Si, and Si phases. The most important factor in the temperature dependence of thermal diffusivity was Si precipitation.
  1. Smallman RE, Bishop RJ, Modern Physical Metallurgy and Materials Engineering, 6th ed., p. 316, Oxford (1999).
  2. Jeong CY, Mater. Trans., 54, 588 (2013)
  3. Tavitas-Medrano FJ, Mohamed AMA, Gruzleski JE, Samuel FH, Doty HW, J. Mater. Sci., 45(3), 641 (2010)
  4. Aksoz S, Ocak Y, Maras N, Cadirli E, Kaya H, Boyuk U, Exp. Therm. Fluid Sci., 34, 1507 (2010)
  5. Lumley RN, Polmear IJ, Groot H, Ferrier J, Scr. Mater., 58, 1006 (2008)
  6. Lee EW, Oppenheim T, Robinson K, et al., Eng. Fail. Anal., 14, 1538 (2007)
  7. Kaschnitz E, Funk W, Pabel T, High Temp. High Press., 43, 175 (2014)
  8. Kaschnitz E, Ebner R, High Temp. High Press., 38, 221 (2009)
  9. Vandersluis E, Lombardi A, Ravindran C, Bois-Brochu A, Chiesa F, MacKay R, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 648, 401 (2015)
  10. Jeong C, Mater. Trans., 53, 234 (2012)
  11. Hamzwhei M, Rashidi M, Therm. Eng. Environ., 2006, 153 (2006)
  12. Tritt TM, Thermal Conductivity : p. 21, Kluwer Academic/Plenum, New York (2004).
  13. Grosselle F, Timelli G, Bonollo F, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 527, 3536 (2010)
  14. Chakrabarti DJ, Laughlin DE, Progr. Mater. Sci., 49, 389 (2004)
  15. Miao WF, Laughlin DE, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 31, 361 (2000)
  16. Chakrabarti DJ, Peng Y, Laughlin DE, Mater. Sci. Forum, 396-402, 857 (2002)
  17. Biswas A, Siegel DJ, Seidman DN, Acta Mater., 75, 322 (2014)
  18. Sjolander E, Seifeddine S, J. Mater. Process. Tech., 210, 1249 (2010)
  19. Lasagni F, Mingler B, Dumont M, Degischer HP, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 480, 383 (2008)
  20. Li RX, Li RD, Zhao YH, He LZ, Li CX, Guan HR, Hu ZQ, Mater. Lett., 58, 2096 (2004)
  21. Sjolander E, Seifeddine S, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 528, 7402 (2011)
  22. Mukhopadhyay AK, Yang QB, Singh SR, Acta Metall. Mater., 42, 3083 (1994)
  23. Abis S, Massazza M, Mengucci P, Riontino G, Scr. Mater., 45, 685 (2001)