화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.6, 632-639, December, 2021
기상 불소화법을 이용한 WO3-xFx 광촉매의 합성 및 광분해 특성
Synthesis and Photocatalytic Activity of WO3-xFx Photocatalysts Using a Vapor Phase Fluorination
E-mail:
초록
본 연구에서는 WO3 광촉매의 활성을 증대시키기 위하여 불소 도핑을 수행하고, 메틸렌블루 염료를 이용하여 광분해 특성을 고찰하였다. 본 연구를 통해 제조된 WO3-xFx 광촉매는 WCl6 전구체로부터 WO3 광촉매를 제조하기 위한 소결과정 중에 기상 불소화 방법을 이용하여 제조하였다. 불소 도핑 후 WO3 광촉매의 밴드갭이 2.95 eV에서 2.54 eV로 감소하였고, 산소 결핍 자리 영역이 약 55% 증가하였다. 또한 제조한 광촉매의 초기 염료 분해 성능은 불소 도핑 전과 비교하였을 때 10%에서 60%로 불소 도핑 후 6배 증가하였다. 이는 불소가 도핑되어 광촉매의 밴드갭이 감소하여 적은 에너지로 촉매 활성 반응을 가능하게 하고, 또한 산소 결핍이 생성된 표면 결함이 WO3 광촉매의 가시광선 흡수영역을 증대시켜 광촉매 활성이 증가한 것으로 사료된다. 본 연구에서는 후처리 공정이 불필요한 원스텝 기상 불소화 반응을 이용하여 손쉬운 방법으로 광촉매활성이 뛰어난 불소가 도핑된 WO3-xFx 광촉매를 제조할 수 있음을 확인하였다.
In this research, fluorine doping was performed to enhance the photocatalytic activities of WO3 which were measured using methylene blue dye. WO3-xFx photocatalyts were prepared by a vaper phase fluorination during a sintering for preparing WO3 photocatalysts from a WCl6 precursor. The bandgap energy of WO3 photocatalysts decreased from 2.95 eV to 2.54 eV, and the oxygen vacancies site increased by about 55% after fluorine doping. In addition, the initial degradation efficiency of methylene blue showed that the fluorine doped sample showed a 6-fold increase in photocatalytic activities from 10% to 60% compared to that of the untreated sample. It is believed that fluorine is doped to reduce the band gap of photocatalysts, enabling the catalytic activity with low energy, and that oxygen vacancies-generated surface defects increase the visible light absorption region of WO3 photocatalysts, thereby increasing photocatalytic activity. In this study, it was confirmed that fluorine-doped WO3-xFx photocatalysts with an excellent photocatalytic activity can be manufactured easily using a one-step vaper phase fluorination that does not require a post-treatment process.
  1. Ebrahimi R, Maleki A, Zandsalimi Y, Ghanbari R, Shahmoradi B, Rezaee R, Safari M, Joo SW, Daraei H, Puttaiah SH, Giahi O, J. Ind. Eng. Chem., 73, 297 (2019)
  2. Nguyen CH, Juang RS, J. Ind. Eng. Chem., 76, 296 (2019)
  3. Yun SM, Kim J, Jeong E, Im JS, Lee YS, Appl. Chem. Eng., 22(1), 21 (2011)
  4. Rafiq A, Ikram M, Ali S, Niaz F, Khan M, Khan Q, Maqbool M, J. Ind. Eng. Chem., 97, 111 (2021)
  5. Quyen VT, Kim J, Park PM, Huong PT, Viet NM, Thang PQ, J. Environ. Chem. Eng., 9, 104737 (2021)
  6. Ohtaki M, Sato H, Fujii H, Eguchi K, J. Mol. Catal. A-Chem., 155(1-2), 121 (2000)
  7. Gonzalez-Borrero PP, Sato F, Medina AN, et al., Appl. Phys. Lett., 96, 061909 (2010)
  8. Kang KM, Jeong JH, Lee GI, Im JM, Cheon HJ, Kim DH, Nah YC, J. Korean Powder Metall. Inst., 26, 40 (2019)
  9. Obeid MM, Stampfl C, Bafekry A, Guan Z, Jappor H, Nguyen C, Naseri M, Hoat D, Hieu N, Krauklis A, PCCP, 22, 15354 (2020)
  10. Mohammadi S, Sohrabi M, Golikand AN, Fakhri A, J. Photochem. Photobiol. B-Biol., 161, 217 (2016)
  11. Yamashita H, Honda M, Harada M, et al., J. Phys. Chem. B, 102, 10707 (1998)
  12. Zheng Y, Chen G, Yu YG, Zhou YS, He F, Appl. Surf. Sci., 362, 182 (2016)
  13. Liu YY, Li Y, Li WZ, Han S, Liu CJ, Appl. Surf. Sci., Jin G, Liu S, 258(12), 5038 (2012)
  14. Jin G, Liu S, Dig. J. Nanomater. Biostruct., 4, 1179 (2016)
  15. Singh S, Srivastava VC, Lo SL, Mater. Sci. Forum, 855, 105 (2016)
  16. Liao M, Su L, Deng Y, Xiong S, Tang R, Wu Z, Ding C, Yang L, Gong D, J. Mater. Sci., 1 (2021).
  17. Song C, Li C, Yin Y, Xiao J, Zhang X, Song M, Dong W, Vacuum, 114, 13 (2015)
  18. Ge S, Wong KW, Tam SK, Mak CH, Ng KM, J. Nanopart. Res., 20 (2018)
  19. Kalanur SS, Catalysts, 9, 456 (2019)
  20. Kim T, Baek G, Yang S, Yang JY, Yoon KS, Kim SG, Lee JY, Im HS, Hong JP, Sci. Rep., 8, 8532 (2018)
  21. Kim HK, Kim JH, Ahn SH, J. Ind. Eng. Chem., 72, 273 (2019)
  22. Kim KH, Cho JH, Hwang JU, Im JS, Lee YS, J. Ind. Eng. Chem., 99, 48 (2021)
  23. Wang J, Wang Z, Huang B, Ma Y, Liu Y, Qin X, Zhang X, Dai Y, ACS Appl Mater Interfaces, 4, 4024 (2012)
  24. Samsudin EM, Abd Hamid SB, Appl. Surf. Sci., 391, 326 (2017)
  25. Kang Y, Wu X, Gao Q, ACS Sustain. Chem. Eng., 7, 4210 (2019)
  26. Wang X, Wang X, Di Q, Zhao H, Liang B, Yang J, Materials, 10, 1398 (2017)
  27. Li D, Haneda H, Labhsetwar NK, Hishita S, Ohashi N, Chem. Phys. Lett., 401(4-6), 579 (2005)
  28. Gonzalez-Torres JC, Poulain E, Dominguez-Soria V, et al., Int. J. Photoenergy, 2018, 1 (2018)
  29. Gan L, Xu L, Shang S, Zhou X, Meng L, Ceram. Int., 42, 15235 (2016)
  30. Sleight AW, Inorg. Chem., 8, 1764 (1969)
  31. Lange MA, Krysiak Y, Hartmann J, et al., Adv. Funct. Mater., 30, 190905 (2020)
  32. Park BG, Chung KH, Korean Chem. Eng. Res., 58(3), 486 (2020)
  33. Gerand B, Nowogrocki G, Guenot J, Figlarz M, J. Solid State Chem., 29, 429 (1979)
  34. Li W, Wang T, Huang D, Zheng C, Lai Y, Xiao X, Cai S, Chen W, Catalysts, 11, 496 (2021)
  35. Zhang J, Fu D, Wang S, Hao R, Xie Y, J. Ind. Eng. Chem., 80, 23 (2019)