Korean Journal of Chemical Engineering, Vol.39, No.1, 167-177, January, 2022
A comprehensive study on enhancement of lipid yield from Tetradesmus obliquus MT188616.1
E-mail:
Microalgae are known to produce neutral-lipids such as triacylglycerols (TAGs), a raw material required for biofuel production. The present study aimed to screen the high lipid producing native microalgae strains from freshwater habitats, select appropriate methods to extract lipid from wet algal biomass, and study fatty acid compositions. At first, isolated twenty native strains among them two isolates that exhibited higher lipid content was further subjected to molecular characterization. Results based on the cell morphology, molecular characterization, and phylogenetic analysis indicated that these two strains were Tetradesmus obliquus and Ettlia oleoabundans. Based on the growth study of screened algal strains, the biomass ranged from 0.65 g/L to 6.03 g/L with Tetradesmus obliquus providing the highest biomass and total lipid content of 51% when cultured in a nitrogen-deprived medium. The highest lipid yield was obtained with hexane:isopropanol (2 : 1) solvent mixtures, accompanied by an optimized cell wall disruption method. Additionally, it was found that Tetradesmus obliquus had higher contents of saturated and monounsaturated fatty acids, i.e., 36.19% and 31.49%, respectively, in nitrogen-deprived medium (N?), whereas in nitrogen-containing medium (N+) was 27.34% and 28.85%, respectively. Hence, this suggests their suitability for biofuel production.
Keywords:Tetradesmus obliquus;Molecular Characterization;Nitrogen Starvation;Lipid Extraction;Fatty Acid Profiling
- Chisti Y, Biotechnol. Adv., 25, 294 (2007)
- Liam B, Philip O, Renew. Sust. Energ. Rev., 2, 557 (2010)
- Mairet F, Bernard O, Masci P, Lacour T, Sciandra A, Bioresour. Technol., 1, 142 (2011)
- Singh J, Gu S, Renew. Sust. Energ. Rev., 9, 2596 (2010)
- Liu AY, Chen W, Zheng LL, Song LR, Progr. Natur. Sci. Mater. Intern., 21, 269 (2011)
- Li X, Hu HY, Gan K, Sun YX, Bioresour. Technol., 101(14), 5494 (2010)
- Yeh KL, Chang JS, Biotechnol. J., 6, 1358 (2011)
- Karim AM, et al., Microalgae cultivation for biofuels production chapter 9, Academic Press Publication-Elsevier, New York (2020).
- Li Y, Naghdi FG, Garg S, Vega TCA, Thurecht KJ, Ghafor WA, Tannock S, Schenk PM, Microb. Cell. Factor, 13, 14 (2014)
- Wawrik B, Harriman BH, J. Microbiol. Methods, 80, 262 (2010)
- De la Vega M, Diaz E, Vila M, Leon R, Biotech. Progr., 27, 1535 (2011)
- Sherwood AR, J. Phyc., 43, 1104 (2007)
- Jazzar S, Medina JQ, Carrillo PO, Marzouki MN, Fernandez FGA, Sevilla JMF, Grima EM, Smaali I, Biores. Technol., 190, 281 (2015)
- Guillard RRL, Sieracki MS, in Algal culturing techniques, Elsevier Academic Press (2005).
- Chen Y, Vaidyanathan S, Anal. Chim. Acta, 724, 67 (2012)
- Kim J, Yoo G, Lee H, Lim J, Kim K, Kikm CW, Park MS, Yang JW, Biotechnol. Adv., 31, 862 (2013)
- Kumar RR, Rao PH, Arumugam M, Front. Energ. Res., 2, 1 (2015)
- Fletcher MJ, Clin Chim. Acta, 22, 393 (1968)
- Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z, Biores. Technol., 152, 292 (2014)
- Gouveia L, Oliveira AC, J. Indus. Microb. Biotech., 36, 269 (2008)
- Sathya S, Srisudha S, Int. J. Rec. Sci. Res., 4, 1432 (2013)
- Dayananda C, Kumudha A, Sarada R, Ravishankar GA, Scient. Res. Ess., 5, 2497 (2010)
- Yu Z, Pei HY, Jiang LQ, Hou QJ, Nie CL, Zhang LJ, Bioresour. Technol., 247, 904 (2018)
- Pancha I, Chokshi K, George B, Ghosh T, Paliwal C, Maurya R, Mishra S, Bioresour. Technol., 156, 146 (2014)
- Jia J, Han D, Gerken HG, Li Y, Sommerfeld M, Hu Q, Xu J, Algal. Res., 7, 66 (2015)
- Qi F, Pei HY, Ma GX, Zhang S, Mu RM, Energy Conv. Manag., 129, 100 (2016)
- Vanitha A, Narayan MS, Murthy KNC, Ravishankar GA, Int. J. Food Sci. Nutr., 58, 373 (2007)
- Damiani MC, Popovich CA, Constenla D, Leonardi PI, Bioresour. Technol., 101(11), 3801 (2010)
- Bougaran G, Rouxel C, Dubois N, Kaas R, Grouas S, Lukomska E, Le Coz JR, Cadoret JP, Biotechnol. Bioeng., 109(11), 2737 (2012)
- Bona F, Capuzzo A, Franchino M, Maffei ME, Algal. Res., 5, 1 (2014)
- Ma YB, Wang ZY, Yu CJ, Yin YH, Zhou GK, Bioresour. Technol., 167, 503 (2014)
- Yu HT, Tian FL, Wang HY, Hu YH, Sheng WL, Adv. Mater. Res., 953, 281 (2014)
- Du Y, Schuur B, Kersten SRA, Brilman DWF, Algal. Res., 11, 271 (2015)
- Byreddy AR, Gupta A, Barrow CJ, Puri M, Mar. Drugs, 13, 5111 (2015)
- Ramluckan K, Moodley KG, Bux F, Fuel, 116, 103 (2014)
- Lewis T, Nichols PD, McMeekin TA, J. Microbiol. Methods, 43, 107 (2000)
- Ryckebosch E, Muylaert K, Foubert I, J. Am. Oil. Chem. Soc., 89, 189 (2012)
- Folch J, Lees M, Sloane-Stanley GH, J. Biol. Chem., 226, 497 (1957)
- Bligh EG, Dyer WJ, Can. J. Biochem. Physiol., 37, 911 (1959)
- Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D, J. Lipid Res., 49, 1137 (2008)
- Sheng J, Vannela R, Rittrnann BE, Bioresour. Technol., 102(2), 1697 (2011)
- Li T, Xu J, Wu H, Wang G, Dai S, Fan J, He H, Xiang W, Mar. Drugs, 14, 162 (2016)
- Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM, Bioresour. Technol., 101, S75 (2010)
- Zheng HL, Yin JL, Gao Z, Huang H, Ji XJ, Dou C, Appl. Biochem. Biotechnol., 164(7), 1215 (2011)
- Prabakaran P, Ravindran AD, Lett. Appl. Microbiol., 53, 150 (2011)
- Rakesh S, Dhar DW, Prasanna R, Saxena AK, Saha S, Shukla M, Sharma K, Eng. Life. Sci., 1 (2015).
- Halim R, Harun R, Danquah MK, Webley PA, Appl. Energy, 91(1), 116 (2012)
- Singh K, Kaloni D, Gaur S, Kushwaha S, Mathur G, Biofuels, 11, 1 (2020)
- Shao Y, Fang H, Zhou H, Wang Q, Zhu Y, He Y, Biotechnol. Biofuels, 10, 300 (2017)