Journal of Industrial and Engineering Chemistry, Vol.106, 152-159, February, 2022
A comparative study of the catalytic and non-catalytic ozone based processes for simultaneous of SO2 and NOX removal
E-mail:
Ozonation process alone is not sufficient to remove both the SO2 and NOX gases, when treated simultaneously. Therefore in this work, a suitable technique to remove SO2 and NOX simultaneously has been evaluated using combination of O3, H2O2 and a solid catalyst. OMS-2, a manganese based catalyst have been incorporated with O3 and H2O2 for enhanced radical generation. This preferably enhances the oxidation of SO2 and NOx species in aqueous medium simultaneously. The role of some important process parameters have been tested on the performance of SO2 and NOX absorption. To get the maximum removal of SO2 and NOX, the neutral pH, temperature close to 300.320 K, and H2O2 at 0.2 mol L-1 concentrations
was found to be the optimum condition. The use of catalyst (approximately 2 g L-1) + O3 + H2O2 shows promising results on the removal of SO2 and NOX. In addition to that, the kinetics of the catalytic ozonation and peroxone removal of SO2 and NO2 has been evaluated. The cost estimation study for the ozone and peroxone based catalytic processes has been presented with comparison of the respective flue gas %removal.
- Biard PF, Couvert A, Renner C, Levasseur JP, Chemosphere, 85, 1122 (2011)
- Liu Y, Jiang J, Ma J, Yang Y, Luo C, Huangfu X, Guo Z, Water Res., 68, 750 (2015)
- Khuntia S, Majumder SK, Ghosh P, Chem. Eng. Res. Des., 98, 231 (2014)
- Gopi T, Swetha G, Chandra S, Shekar SC, Ramakrishna C, Saini B, Krishna R, Rao PVL, Catal. Commun., 92, 51 (2017)
- Wang C, Ma J, Liu F, He H, Zhang R, J. Phys. Chem. C, 119, 23119 (2015)
- Wei-yi S, Qing-yuan W, Sang-lan D, Shi-jun S, Chem. Eng. J., 228, 700 (2013)
- Wang Z, Zhou J, Zhu Y, Wen Z, Liu J, Cen K, Fuel Process. Technol., 88, 817 (2007)
- Sun C, Zhao N, Zhuang Z, Wang H, Liu Y, Weng X, Wu Z, J. Hazard. Mater., 274, 376 (2014)
- Fang P, Cen C, Tang Z, Chen Z, Chem. Eng. J., 168, 52 (2011)
- Chang MB, Lee HM, Wu F, Lai CR, J. Air Waste Manage. Assoc., 54, 941 (2004)
- Basfar AA, Fageeha OI, Kunnummal N, Al-Ghamdi S, Chmielewski AG, Licki J, Pawelec A, Tyminski B, Zimek Z, Fuel, 87, 1446 (2008)
- Raju T, Chung SJ, Pillai KC, Moon IS, Clean - Soil, Air, Water, 36, 476 (2008)
- Mok YS, Lee HJ, Fuel Process. Technol., 87, 591 (2006)
- Liu Y, Zhang J, Sheng C, Chem. Eng. J., 168, 183 (2011)
- Skalska K, Miller JS, Ledakowicz S, Chem. Eng. Process. Process Intensif., 61, 69 (2012)
- Beltr?n FJ, Rivas FJ, Montero-de-Espinosa R, Ind. Eng. Chem. Res., 42, 3210 (2003)
- Beltr?n FJ, Rivas J, ?lvarez P, Montero-de-Espinosa R, Ozone Sci. Eng., 24, 227 (2002)
- Rosal R, Rodr?guez A, Perdig?n-Mel?n JA, Mezcua M, Hernando MD, Let?n P, Garc?a-Calvo E, Ag?era A, Fern?ndez-Alba AR, Water Res., 42, 3719 (2008)
- Fischbacher A, von Sonntag J, von Sonntag C, Schmidt TC, Environ. Sci. Technol., 47, 9959 (2013)
- Khuntia S, Sinha MK, Mohan G, Ind. Eng. Chem. Res., 59, 17806 (2020)
- Qi F, Xu B, Chu W, J. Mol. Catal. A Chem., 396, 164 (2014)
- Ho PH, Lee SC, Kim J, Lee D, Woo HC, Fuel Process. Technol., 131, 238 (2015)
- Ren Y, Zhang H, An H, Zhao Y, Feng J, Xue L, Luan T, Fan Z, J. Colloid Interface Sci., 526, 347 (2018)
- Lin F, Wang Z, Ma Q, Yang Y, Whiddon R, Zhu Y, Cen K, Appl. Catal. B Environ., 198, 100 (2016)
- Liu ZQ, Tu J, Wang Q, Cui YH, Zhang L, Wu X, Zhang B, Ma J, Sep. Purif. Technol., 200, 51 (2018)
- Lv A, Hu C, Nie Y, Qu J, Appl. Catal. B Environ., 117-118, 246 (2012)
- Yang L, Ma J, Li X, He G, Zhang C, He H, Catal. Sci. Technol., 10, 7671 (2020)
- Peng B, Bao W, Wei L, Zhang R, Wang Z, Wang Z, Wei Y, Pet. Sci., 16, 912 (2019)
- Khuntia S, Sinha MK, Singh P, Environ. Technol., 42, 623 (2021)
- Zhang J, Zhang R, Chen X, Tong M, Kang W, Guo S, Zhou Y, Lu J, Ind. Eng. Chem. Res., 53, 6450 (2013)
- Beltr?n FJ, Ozone Reaction Kinetics for Water and Wastewater System, CRC Press, Boca Raton, Florida, USA, 2004.
- Mer?nyi G, Lind J, S. Naumov, C. Von Sonntag, Environ. Sci. Technol., 44, 3505 (2010)
- De Witte B, Dewulf J, Demeestere K, Van Langenhove H, J. Hazard. Mater., 161, 701 (2009)
- Sun Q, Li L, Yan H, Hong X, Hui KS, Pan Z, Chem. Eng. J., 242, 348 (2014)
- Liu Y, Chen Z, Gong W, Dou Y, Wang S, Wang W, Sep. Purif. Technol. , 172, 251 (2017)
- Guo L, Han C, Zhang S, Zhong Q, Ding J, Zhang B, Zeng Y, Fuel, 233, 769 (2018)
- Kasprzyk-Hordern B, Zi?��ek M, Nawrocki J, Appl. Catal. B, 46, 639 (2003)
- Pradhan MP, Suchak NJ, Walse PR, Joshi JB, Chem. Eng. Sci., 52, 4569 (1997)
- Schwartz SE, White WH, Kinetics of Reactive Dissolution of Nitrogen Oxides Into Aqueous Solution, John Wiley and Sons Inc, 1983.
- Ustinov OA, Yakunin SA, Radiochemistry, 59, 109 (2017)
- Kameda T, Kodama , Yoshioka T, Chemosphere, 120, 378 (2015)