Journal of Industrial and Engineering Chemistry, Vol.106, 512-519, February, 2022
Co+3 substituted gadolinium nano-orthoferrites for environmental monitoring: Synthesis, device fabrication, and detailed gas sensing performance
E-mail:
The development of gas sensors with high sensitivity, stability, and selectivity is vital in detecting hazardous gas leaks and monitoring air pollution. The perovskite comprises a stable chemical structure and offers multifunctional properties to act as a base for several device engineering. Specifically, perovskites possess a great potential for chemical sensors with their semiconducting nature and ease to dope with other elements to further improve gas sensing properties. In this present study, a rare-earth gadolinium orthoferrite, GdFeO3 (GFO), and Co-doped GFO were systematically investigated by evaluating their structural, morphological, electrical, and gas sensing properties. A high-temperature solid-state reaction synthesized the phase-pure compounds. The magnetic properties of Co-doped GFO significantly improved than pure GFO. The pellet-type gas sensor was fabricated, which does not need any sophisticated instrumentation such as microfabrication. When exposed to 20 ppm of NO2 gas, a GdFe0.7Co0.3O3 (GFOC3) device gave 6.86% response at 200 C, along with a response time of 104 s and the recovery time of 97 s. Additionally, Co-doped GFO sensors showed a detectable response even at room temperature, enabling- practical applications in an ambient environment. The gas sensor revealed stable gas response characteristics even after several months. Therefore, this study elucidates that the Co-doped GFO has better gas sensing performance compared to a bare GFO and that it is highly selective towards the NO2 gas.
- Yin Y, Shen Y, Zhou P, Lu R, Li A, Zhao S, et al., Appl. Surf. Sci., 509, 145335 (2020)
- Montzka SA, Dlugokencky EJ, Butler JH, Nature, 476, 43 (2011)
- Lee K, Sahu M, Hajra S, Mohanta K, Kim HJ, Ceram. Int., 47, 22794 (2021)
- Shinde PV, Rout CS, Nanoscale Adv., 3, 1551 (2021)
- Malik R, Tomer VK, Mishra YK, Lin L, Appl. Phys. Rev., 7, 21301 (2020)
- Sun Q, Feng W, Yang P, You G, Chen Y, New J. Chem., 42, 6713 (2018)
- Maity A, Raychaudhuri AK, Ghosh B, Sci. Rep., 9, 7777 (2019)
- Kumar R, Al-Dossary O, Kumar G, Umar A, Nano-Micro Lett., 7, 97 (2015)
- Hiragond CB, Lee J, Kim H, Jung JW, Cho CH, In SI, Chem. Eng. J, 416, 127978 (2021)
- Hajra S, Tripathy A, Panigrahi BK, Choudhary R, Mater. Res. Express, 6, 76304 (2019)
- Kim HJ, Kim U, Kim TH, Kim J, Kim HM, Jeon BG, et al., Phys. Rev. B, 86, 165205 (2012)
- Natile MM, Ponzoni A, Concina I, Glisenti A, Chem. Mater., 26, 1505 (2014)
- Wang H, Fang Y, Liu Y, Bai X, J. Nat. Gas Chem., 21, 745 (2012)
- Lee K, Hajra S, Sahu M, Kim HJ, J. Alloy. Compd., 882, 160634 (2021)
- Subramanian Y, Ramasamy V, Karthikeyan RJ, Srinivasan GR, Arulmozhi D, Gubendiran RK, et al., Heliyon, 5, e01831 (2019)
- Nakhaei M, Khoshnoud DS, J. Mater. Sci.: Mater. Electron., 1?15, (2021).
- Tokunaga Y, Furukawa N, Sakai H, Taguchi T, Arima TH, Tokura Y, Nat. Mater., 8, 558 (2009)
- Maity R, Dutta A, Halder S, Shannigrahi S, Mandal K, Sinha TP, PCCP, 23, 16060 (2021)
- Xiaofeng W, Ma W, Sun K, Hu J, Qin H, J. Rare Earths, 35, 690 (2017)
- Niu X, Du W, Du W, Sens. Actuators, B, 99, 399 (2004)
- Siemons M, Leifert A, Simon U, Adv. Funct. Mater., 17, 2189 (2007)
- Otitoju TA, Okoye PU, Chen G, Li Y, Okoye MO, Li S, J. Ind. Eng. Chem., 85, 34 (2020)
- Aono H, Traversa E, Sakamoto M, Sadaoka Y, Sens. Actuators, B, 94, 132 (2003)
- Mariyappan V, Keerthi M, Chen SM, Jeyapragasam T, J. Colloid Interface Sci., 600, 537 (2021)
- Weber MC, Guennou M, Zhao HJ, Iniguez J, Vilarinho R, Almeida A, et al., Phys. Rev. B, 94, 214103 (2016)
- Panchwanee A, Reddy VR, Gupta A, Sathe VG, Mater. Chem. Phys., 196, 205 (2017)
- Sharma P, Hajra S, Sahoo S, Rout PK, Choudhary RNP, Process. Appl. Ceram., 11, 171 (2017)
- Gupta P, Padhee R, Mahapatra PK, Choudhary RNP, J. Mater. Sci. Mater. Electron., 28, 17344 (2017)
- Sahu M, Pradhan SK, Hajra S, Panigrahi BK, Choudhary RNP, Appl. Phys. A, 125, 183 (2019)
- Pradhani N, Mahapatra PK, Choudhary RNP, J. Inorg. Organomet. Polym Mater. (2020).
- Sahu M, Hajra S, Choudhary RNP, SN Appl. Sci., 1, 13 (2018)
- Gupta P, Mahapatra PK, Choudhary RNP, J. Alloy. Compd., 863, 158457 (2021)
- Hajra S, Sahu M, Oh D, Kim HJ, Ceram. Int., 47, 15695 (2021)
- Routray KL, Sanyal D, Behera D, J. Appl. Phys., 122, 224104 (2017)
- Wang M, Zeng L, Chen Q, Dalton Trans., 40, 597 (2011)
- Yadav S, Shinde S, Kadam A, Rajpure K, J. Alloy. Compd., 555, 330 (2013)
- Routray KL, Saha S, Behera D, physica status solidi (b), 256, 1800676, (2019).
- Gurlo A, B?rsan N, Oprea A, Sahm M, Sahm T, Weimar U, Appl. Phys. Lett., 85, 2280 (2004)
- Zhan K, Su R, Bai S, Yu Z, Cheng N, Wang C, et al., Nanoscale, 8, 18121 (2016)
- Kumar R, Goel N, Kumar M, ACS Sensors, 2, 1744 (2017)
- Kumar R, Kulriya PK, Mishra M, Singh F, Gupta G, Kumar M, Nanotechnology, 29, 464001 (2018)
- Zhang XD, Zhang WL, Cai ZX, Li YK, Yamauchi Y, Guo X, Ceram. Int, 45, 5240 (2019)
- Lee K, Hajra S, Sahu M, Kim HJ, J. Alloy. Compd., 160634, (2021).
- Balamurugan C, Song SJ, Lee DW, Sens. Actuators, B, 272, 400 (2018)
- Waghmare SD, Raut SD, Ghule BG, Jadhav VV, Shaikh SF, Al-Enizi AM, et al., J. King Saud Univ.-Sci., 32, 3125 (2020)