Korean Chemical Engineering Research, Vol.60, No.1, 116-124, February, 2022
통합 하이브리드시스템의 압력강하 거동 및 바이오필터 담체의 미생물 population 분포
Pressure Drop of Integrated Hybrid System and Microbe-population Distribution of Biofilter-media
E-mail:
초록
교대로 운전되는 광촉매반응기 공정, 및 바이오필터 공정(전통적 바이오필터(L 반응기)와 두 개의 유닛(unit)을 가지는 개선된 바이오필터시스템(R 반응기))로 구성된 통합처리시스템에서, 에탄올과 황화수소를 동시 함유한 폐가스 처리를 수행하는데 발생하는 공정 당 압력강하(△p)와 바이오필터 공정의 미생물 population 분포를 관찰하였다. 교대로 운전되는 광촉매 반응기의 △p는, 바이오필터의 △p와 비교할 때에 무시할 정도로 작게 관찰되었다. L 반응기의 △p는, 통합처리시스템의 운전 중에 계속 증가하여 4.0~5.0 mmH2O (i.e., 5.0~6.25 mmH2O/m)로 증가하였다. 한편 R 반응기의 경우에서는 L 반응기의 △p의 약 16~20% 이하인 작은 △p를 나타내었다. 본 연구에서 적용한 공극율이 큰 폐타이어 담체 등의 바이오필터 담체 및 R 반응기 설계의 적용이, 목재 칩(wood chip)과 목재 바크(wood bark)의 50 대 50인 혼합물을 바이오필터 담체로 사용한 전통적 바이오필터의 보고된 압력강하 값의 각각 37~50%와 40~53% 만큼 압력강하 저감에 공헌하였다고 분석되었다. 또한 본 연구의 R 반응기 운전에서 압력강하 값이, 공극율이 큰 화산석(scoria)과 compost를 75 대 25로 혼합한 복합 담체를 충전한 전통적 바이오필터의 보고된 압력강하 값보다 약 80%만큼 저감된 결과는 주로 R 반응기 설계의 적용에 기인하였다고 해석되었다. 한편, 통합처리시스템에서 바이오필터 담체의 microbial population 분포로서 L 반응기 및 R 반응기의 담체 내 미생물 콜로니 수 비교에서는 L 반응기가 제일 밑단에서 다른 윗 단의 콜로니 수보다 거의 두 배로 증가하였으나; R 반응기의 경우는 Rdn 반응기와 Rup 반응기 각각의 상단과 하단에서 고르게 분포하였고 L 반응기보다 콜로니 수가 평균적으로 약 50% 정도 더 컸다. 이러한 현상은 R 반응기의 상단과 하단의 함수율이 50-55%의 고른 분포를 보인 것에 기인하였다. 따라서 개선된 바이오필터시스템이 전통적 바이오필터보다 △p와 미생물 population 분포에서 더욱 우수한 특성을 보였다.
In this study, waste air containing ethanol and hydrogen sulfide, was treated by an integrated hybrid system composed of two alternatively-operating UV/photocatalytic reactor-process and biofilter processes of a biofilter system having two units with an improved design (R reactor) and a conventional biofilter (L reactor). Both a pressure drop (△p) per unit process of the integrated hybrid system and a microbe-population-distribution of each biofilter process were observed. The △p of the UV/photocatalytic reactor process turned out very negligible. The △p of the L reactor was observed to increase continuously to 4.0~5.0 mmH2O (i.e., 5.0~6.25 mmH2O/m). In case of R reactor, its △p showed the one below ca. 16~20% of the △p of the L reactor. Adopting such microbes-carrying biofilter media with high porosity as waste-tire crumb media, and the improved biofilter design, contributed to △p of this study, reduced by ca. 37~50% and 40~53%, respectively, from the reported △p of conventional biofilter packed with biofilter media of the mixture (50:50) of wood chip and wood bark. In addition, the △p of R reactor in this study, reduced by ca. 80% from the reported △p of conventional biofilter packed with biofilter media of the mixture (75:25) of scoria with high porosity and compost, was mainly attributed to adopting the improved biofilter design. On the other hand, in case of L reactor, the CFU counts in its lowest column was analyzed double as much as those in any other columns. However, in case of R reactor, its CFU counts were bigger by 50% than the one of L reactor and its microbes were evenly distributed at its higher and lower columns of Rdn reactor and Rup reactor. This phenomena was attributed to an even moisture distribution of 50~55% of R reactor at its higher and lower columns. Therefore, R reactor showed superb characteristics in terms of both △p and microbe-population-distribution, compared to L reactor.
Keywords:Waste-air;Integrated hybrid system;Alternatively-operating UV/photocatalytic reactor;Biofilter system with an improved design;Conventional biofilter;Pressure drop;Moisture distribution;Microbe population distribution
- Ndegwa PM, Hristov AN, Arogo J, Sheffield RE, Biosystems Engineering, 100(4), 453 (2008)
- Sun Y, Quan X, Chen J, Yang F, Xue D, Liu Y, Yang Z, Process Biochemistry, 38(1), 109 (2002)
- Baltrenas P, Janusevicius T, Kleiza J, Processes, 9(4), 625 (2021)
- Yang CP, Suidan MT, Zu XQ, Kim BJ, Water Sci. Tech., 48, 89 (2003)
- Alonso C, Suidan MT, Kim BR, Kim BJ, Environ. Sci. Technol., 2, 3118 (1998)
- Okkerse WJH, Ottengraf SPP, Osinga-Kuipers B, Okkerse M, Biotechnol. Bioeng., 63(4), 418 (1999)
- Smith FL, Sorial GA, Suidan MT, Breen AW, Bismas P, Environ. Sci. Technol., 30, 1744 (1996)
- Cox HHJ, Deshusses MA, J. Eng. Appl. Sci., 62, 216 (1999)
- Cox HHJ, Deshusses MA, Water Res., 33, 2383 (1999)
- Moe WM, Irvine RL, J. Environ. Eng., 126, 826 (2000)
- Kenes C, Veiga MC, Rev. Environ. Sci. Biotechnol., 1, 201 (2002)
- Yang CP, Suidan MT, Zu XQ, Kim BJ, Environ. Prog., 22, 87 (2003)
- Dorado AD, Baeza JA, Lafuente J, Gabriel D, Gamisans X, Chem. Eng. J., 209, 661 (2012)
- Chen L, Hoff SJ, Applied Engineering in Agriculture, 28(6), 893 (2012).
- Kristensen EF, Kofman PD, Jensen PD, Biomass Bioenerg., 25(4), 399 (2003)
- Shareefdeen Z, Korean J. Chem. Eng., 32(1), 15 (2015)
- Lee EJ, Lim KH, Korean J. Chem. Eng., 29(10), 1373 (2012)
- Swanson WJ, Loehr RC, Journal of Environmental Engineering, 123(6), 538(1997).
- Williams TO, Miller FC, Biocycle, 33, 72 (1992)
- Baquerizo G, Maestre JP, Sakuma T, Deshusses MA, Gamisans X, Gabriel D, Lafuente J, Chem. Eng. J., 113(2-3), 205 (2005)
- Chen YX, et al., “Long-term Operation of Biofilters for Biological Removal of Ammonia. Chemosphere,” 58(8), 1023 (2005).
- Chen L, Hoff SJ, Applied Engineering in Agriculture, 25(5), 751 (2009).
- Grubecki I, Biosystems Engineering, 139, 100 (2015)
- Amin MM, Rahimi A, Bina B, Heidari M, Moghadam, Journal of Environmental Health Science & Engineering, 12(1), 140(2014).
- Lee EJ, Lim KH, Korean Chem. Eng. Res., 51(1), 127 (2013)
- Lim KH, Lee EJ, Korean Patent No. 10-0942147(2010).
- Lee EJ, Lim KH, Korean Chem. Eng. Res., 600(1), 100 (2022)
- Lee EJ, Lim KH, Korean Chem. Eng. Res., 59(4), 574 (2021)
- Lee EJ, Chung CH, Lim KH, Korean Chem. Eng. Res., 59(4), 584 (2021)