화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.60, No.1, 159-168, February, 2022
Mo-Al 복합 산화물의 질화반응 처리된 촉매상에서 암모니아 촉매 분해반응
Catalytic Ammonia Decomposition on Nitridation-Treated Catalyst of Mo-Al Mixed Oxide
E-mail:
초록
MoO3 비율을 10-50 중량비로 변화하여 제조한 Mo-Al 복합 산화물 상에서 소성 후 승온 질화반응을 통하여 얻은 Mo-Al 질화물 상에서 암모니아 분해반응에서의 촉매 활성을 검토하였다. 제조된 촉매의 물리·화학적 특성을 알아보기 위하여 N2 흡착분석, X-선 회절분석(XRD), X-선 광전자분석법(XPS), 수소 승온환원(H2-TPR), 투과전자현미경(TEM)분석을 수행하였다. 600 °C 에서 소성 후 Mo-Al 복합산화물은 γ-Al2O3와 Al2(MoO4)3 결정상을 나타냈으며 질화반응후의 질화물은 비정형 형태를 보여주었다. 질화반응 후의 비표면적은 MoO3의 위상전환반응에 의해 Mo 질화물 형성으로 인해 증가하였으며, Mo 질화물이 γ-Al2O3에 담지된 형태를 보여주었다. 암모니아 분해반응에서의 촉매 활성은 40 wt% MoO3가 가장 좋은 활성을 보여주었고, 질화반응 시간이 증가함에 따라 활성이 증가하였으며 이에 따라 활성화에너지 감소 효과를 나타냈다.
Catalytic activity in ammonia decomposition reaction was studied on Mo-Al nitride obtained through temperature programmed nitridation of calcined Mo-Al mixed oxide prepared by varying the MoO3 quantity in the range of 10-50 wt%. N2 sorption analysis, X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS) and H2-temperature programmed reduction (H2-TPR), and transmission electron microscopy (TEM) to investigate the physicochemical properties of the prepared catalyst were performed. After calcination at 600 °C, the XRD of Mo-Al oxide showed γ-Al2O3 and Al2(MoO4)3 phases, and the nitride after nitridation showed an amorphous form. The specific surface area after nitridation by topotactic transformation of MoO3 to nitride was increased due to the formation of Mo nitride, and the Mo nitride was observed to be supported on γ-Al2O3. As for the catalytic activity in the ammonia decomposition reaction, 40 wt% MoO3 showed the best activity, and as the nitridation time increases, the activity increased, and thus the activation energy decreased.
  1. Bell TE, Torrente-Murciano L, Top. Catal., 59, 1438 (2016)
  2. Mukherjee S, Devaguptapu SV, Sviripa A, Lund CRF, Wu G, Appl. Catal. B: Environ., 226, 162 (2018)
  3. Lamb KE, Dolan MD, Kennedy DF, Int. J. Hydrog. Energy, 44(7), 3580 (2019)
  4. Le TA, Do QC, Kim YM, Kim TW, Chae HJ, Korean J. Chem. Eng., 38(6), 1087 (2021)
  5. Schuth F, Palkovits R, Schlogl R, Su DS, Energy Environ. Sci., 5, 6278 (2012)
  6. Mukherjee S, Devaguptapu SV, Sviripa A, Lund CRF, Wu G, Appl. Catal. B: Environ., 226, 162 (2018)
  7. Makepeace JW, Wood TJ, Hunter HMA, Jones MO, David WIF, Chem. Sci., 6, 3805 (2015)
  8. Guo J, Wang P, Wu G, Wu A, Hu D, Xiong Z, Wang, Yu JP, Chang F, Chen Z, Chen P, Angew. Chem.-Int. Edit., 54, 2950 (2015)
  9. Hajduk S, Dasireddy VDBC, Likozar B, Drazic G, Orel ZC, Appl. Catal. B: Environ., 211, 57 (2017)
  10. Huo L, Han X, Zhang L, Liu B, Gao R, Cao B, Wang WW, Jia CJ, Liu K, Liu J, Zhang J, Appl. Catal. B: Environ., 294, 120525 (2021)
  11. Huo LL, Liu BC, Li H, Cao B, Hu XC, Fu XP, Jia CJ, Zhang J, Appl. Catal. B: Environ., 253, 121 (2019)
  12. Morlanes N, Sayas S, Shterk G, Catal. Sci. Techn., 11, 3014 (2021)
  13. Huang C, Yu Y, Tang X, Liu Z, Zhang J, Ye C, Ye Y, Zhang R, Appl. Surf. Sci., 5321, 147335 (2020)
  14. Wang Y, Kunz MR, Siebers S, Rollins H, Gleaves J, Yablonsky G, Fushimi R, Catalysts, 9, 104 (2019)
  15. Fu E, Qiu Y, Lu H, Wang S, Liu L, Feng H, Yang Y, Wu Z, Xie Y, Gong F, Xiao R, Fuel Proc. Tech., 221, 106945 (2021)
  16. Maleki H, Fulton M, Bertola V, Chem. Eng. J., 411, 128595 (2021)
  17. Feng J, Liu L, Ju X, Wang J, Zhang X, He T, Chen P, ChemCatChem, 13, 1552 (2012)
  18. Bajus S, Agel F, Kusche M, Bhriain NN, Wasserscheid P, Appl. Catal. A: Gen., 510, 189 (2016)
  19. Nagaoka K, Eboshi T, Takeishi Y, Tasaki R, Honda, Imamura K, Sato K, Sci. Adv., 3, e16027 (2017)
  20. Chen YL, Juang CJ, Chen YC, Catalysts, 11(3), 321 (2021)
  21. Le TA, Kim Y, Kim JW, Lee SU, Kim JR, Kim TW, Lee YJ, Chae HJ, Appl. Catal. B: Environ., 285, 119831 (2021)
  22. Lucentini I, Casanovas A, Llorca J, Int. J. Hydrog. Energy, 44(25), 12693 (2019)
  23. Lucentini I, Colli GG, Luzi CD, Serrano I, Martinez OM, Llorca J, Appl. Catal. B: Environ., 286, 119896 (2021)
  24. Wang ZQ, Qu YM, Shen XL, Cai ZF, Int. J. Hydrog. Energy, 44(14), 7300 (2019)
  25. Li G, Kanezashi M, Tsuru T, Catalysts, 7(1), 23 (2017)
  26. Tang H, Wang Y, Zhang W, Liu Z, Li L, Han W, Li Y, J. Solid State Chem., 295, 121946 (2021)
  27. Maleki H, Fulton M, Bertola V, Chem. Eng. J., 411, 128595 (2021)
  28. Zhang X, Liu L, Feng J, Ju X, Wang J, He T, Chen P, Catal. Sci. Techn., 11, 2915 (2021)
  29. Pinzon M, Romero A, Consuegra ADL, Osa ARDL, Sanchez P, J. Ind. Eng. Chem., 94, 326 (2021)
  30. Podila S, Zaman SF, Driss H, Alhamed, Al-Zahranib YA, Petrov LA, Catal. Sci. Technol., 6, 1496 (2016)
  31. Baek SH, Yun K, Kang DC, An H, Park MB, Shin CH, Min HK, Catalysts, 11(2), 192 (2021)
  32. Srifa A, Okura K, Okanishi T, Muroyama H, Matsui T, Eguchi K, Catal. Sci. Technol., 6, 7495 (2016)
  33. Jolaoso LA, Zaman SF, Podila S, Driss H, Al-Zahrani AA, Daous MA, Petrov L, Int. J. Hydrog. Energy, 43(10), 4839 (2018)
  34. Lorenzut B, Montini T, Bevilacqua M, Fornasiero P, Appl. Catal. B: Environ., 125, 409 (2012)
  35. Dewangan K, Patil SS, Joag DS, More MA, Gajbhiye NS, J. Phys. Chem. C, 114, 14710 (2010)
  36. Colling CW, Choi JG, Thompson LT, J. Catal., 160(1), 35 (1996)
  37. Choi JG, Brenner JR, Colling CW, Demczyk BG, Dunning JL, Thomason LT, Catal. Today, 15, 201 (1992)
  38. Colling CW, Thompson LT, J. Catal., 146(1), 193 (1994)
  39. Zhang D, Liu WQ, Liu YA, Etim UJ, Liu XM, Yan ZF, Chem. Eng. J., 230, 706 (2017)
  40. Meng D, Wang B, Yu WZ, Li Z, Ma X, Catalysts, 7, 151 (2017)
  41. Taghili N, Manteghian M, Jafar A, Appl. Nanosci., 10, 1603 (2020)
  42. Giordano N, Bart JCT, Vaghi A, Castelian A, Martinotti G, J. Catal., 36, 81 (1975)
  43. Groen JC, Peffer LAA, Perez-Ramırez J, Microporous Mesoporous Mater., 60, 1 (2003)