화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.2, 263-274, February, 2022
Temperature driven internal heat integration in an energy-efficient partial double annular column
E-mail:
This study presents a strategy for the internal heat integration of reactive distillation (RD) columns for concurrently producing 2-ethylhexyl dodecanoate and methyl dodecanoate. Because of a significant temperature difference in the two reactions, the two RD column process with each single reaction occurring in the respective column has lower energy consumption than the direct sequence consisting of one RD column followed by a non-RD column. Thus, internal heat integration in a partial double annular configuration is introduced on the basis of the two RD column process. In the new annular RD configuration, heat is transferred from the outer column shell having a high-temperature exothermic reaction to the inner shell with a low-temperature endothermic reaction. By using the concept of pinch temperature, we determine the heat transfer stages to secure sufficient temperature driving force. For the same product purity and reaction extent, the internal heat integrated distillation column (HIDiC) shows lower internal flowrate and energy consumption than the other sequences of the direct sequence and the reactive dividing wall column (RDWC). The total utility consumption of the HIDiC with a partial double annular structure was reduced by 15.4% and 14.4% compared to the direct sequence and the RDWC, respectively.
  1. Gomez-Castro FI, Rico-Ramirez V, Segovia-Hernandez JG, Hernandez S, Chem. Eng. Process. Process Intensif., 49, 262 (2010)
  2. Kim GM, Choi WY, Park JH, Jeong SJ, Hong JE, Jung W, Lee JW, ACS Appl. Nano Mater., 3, 8592 (2020)
  3. Long NVD, Lee DY, Han TH, Park SY, Bong HB, Lee MY, Korean J. Chem. Eng., 37(11), 1823 (2020)
  4. Galanido RJ, Kim DS, Cho JH, Korean J. Chem. Eng., 37(5), 850 (2020)
  5. Jiang ZY, Agrawal R, Chem. Eng. Res. Des., 147, 122 (2019)
  6. Malone MF, Doherty MF, Ind. Eng. Chem. Res., 39, 3953 (2000)
  7. Kiss AA, Jobson M, Gao X, Ind. Eng. Chem. Res., 58(15), 5909 (2019)
  8. Lee JW, Hauan S, Westerberg AW, Ind. Eng. Chem. Res., 39(4), 1061 (2000)
  9. Lee JW, Westerberg AW, AIChE J., 47(6), 1333 (2001)
  10. Huss RS, Chen FR, Malone MF, Doherty MF, Comput. Chem. Eng., 27(12), 1855 (2003)
  11. Gadewar SB, Malone MF, Doherty MF, Ind. Eng. Chem. Res., 46(10), 3255 (2007)
  12. Lee JW, Hauan S, Westerberg AW, AIChE J., 46(6), 1218 (2000)
  13. Lee JW, Hauan S, Lien KM, Westerberg AW, Proc. R. Soc. A, 456, 1953 (2000)
  14. Lee JW, Hauan S, Lien KM, Westerberg AW, Proc. R. Soc. A, 456, 1965 (2000)
  15. Dejanovic I, Matijasevic L, Olujic Z, Chem. Eng. Process., 49(6), 559 (2010)
  16. Yildirim O, Kiss AA, Kenig EY, Sep. Purif. Technol., 80(3), 403 (2011)
  17. Jiang W, Lee H, Han JI, Lee JW, Ind. Eng. Chem. Res., 58(19), 8206 (2019)
  18. Jang W, Namgung K, Lee H, Mo H, Lee JW, Ind. Eng. Chem. Res., 59(5), 1966 (2020)
  19. Mueller I, Kenig EY, Ind. Eng. Chem. Res., 46(11), 3709 (2007)
  20. Novita FJ, Lee HY, Lee MY, Korean J. Chem. Eng., 35(4), 926 (2018)
  21. Feng SY, Ye Q, Xia H, Li R, Suo XM, Chem. Eng. Res. Des., 125, 204 (2017)
  22. Yang A, Sun SR, Eslamimanesh A, Wei SA, Shen WF, Energy, 172, 320 (2019)
  23. Namgung K, Lee H, Jang W, Mo H, Lee JW, Chem. Eng. Process. Process Intensif., 154, 108048 (2020)
  24. Mo HR, Lee HC, Jang WJ, Kwon NU, Lee JW, Korean J. Chem. Eng., 38(1), 195 (2021)
  25. Harwardt A, Marquardt W, AIChE J., 58(12), 3740 (2012)
  26. Lee HC, Jang WJ, Lee JW, Korean J. Chem. Eng., 36(6), 954 (2019)
  27. Fang J, Cheng XM, Li ZY, Li H, Li CL, Chin. J. Chem. Eng., 27(6), 1272 (2019)
  28. Gadalla M, Jimenez L, Olujic Z, Jansens PJ, Comput. Chem. Eng., 31(10), 1346 (2007)
  29. Glenchur T, Govind R, Sep. Sci. Technol., 22, 2323 (1987)
  30. Naito K, Nakaiwa M, Huang K, Endo A, Aso K, Nakanishi T, Nakamura T, Noda H, Takamatsu T, Comput. Chem. Eng., 24(2-7), 495 (2000)
  31. Nakaiwa M, Huang K, Endo A, Ohmori T, Akiya T, Takamatsu T, Chem. Eng. Res. Des., 81(1), 162 (2003)
  32. Lee H, Mo H, Namgung K, Jang W, Lee JW, Ind. Eng. Chem. Res., 59(32), 14398 (2020)
  33. Omota F, Dimian AC, Bliek A, Chem. Eng. Sci., 58(14), 3159 (2003)
  34. Omota F, Dimian AC, Bliek A, Chem. Eng. Sci., 58(14), 3175 (2003)
  35. Steinigeweg S, Gmehling J, Ind. Eng. Chem. Res., 42(15), 3612 (2003)
  36. Hino M, Kurashige M, Matsuhashi H, Arata K, Thermochim. Acta, 441(1), 35 (2006)
  37. Alves-Rosa MA, Martins L, Hammer P, Pulcinelli SH, Santilli, RSC Adv., 6, 6686 (2016)
  38. Lamba R, Kumar S, Sarkar S, Chem. Eng. Commun., 205(3), 281 (2018)
  39. Doherty MF, Chem. Eng. Sci., 40, 1885 (1985)
  40. Wu YC, Lee HY, Tsai CY, Huang HP, Chien IL, Comput. Chem. Eng., 57, 63 (2013)
  41. van Genderen ACG, van Miltenburg JC, Blok JG, van Bommel MJ, van Ekeren PJ, van den Berg GJK, Oonk HAJ, Fluid Phase Equilib., 202(1), 109 (2002)
  42. Kiss AA, Olujic Z, Chem. Eng. Process., 86, 125 (2014)
  43. Linnhoff B, Hindmarsh E, Chem. Eng. Sci., 38, 745 (1983)
  44. Gadalla M, Olujic Z, Sun L, De Rijke A, Jansens PJ, Chem. Eng. Res. Des., 83(A8), 987 (2005)
  45. Li BH, Castillo YEC, Chang CT, Chem. Eng. Res. Des., 148, 260 (2019)
  46. Li BH, Chang CT, Ind. Eng. Chem. Res., 49(8), 3967 (2010)
  47. Luyben WL, Distillation design and control using aspen simulation, John Wiley & Sons, Hoboken, New Jersey (2013).