Macromolecular Research, Vol.30, No.1, 51-60, January, 2022
Novel Potentially Biobased Copolyesters Comprising 1,3-Butanediol, 1,4-Cyclohexanedimethanol and Dimethyl Terephthalate; Effect of Different Catalysts on Polymerization Behavior
E-mail:,
A new series of potentially biobased copolyesters, poly(1,3-butylene 1,4-cyclohexylenedimethylene terephthalate) (P13BCT) based on 1,3-butanediol (1,3-BD) with 1,4-cyclohexane dimethanol (CHDM) was synthesized. Dibutyltin oxide (DBTO) and titanium(IV) butoxide (TBT) catalysts were employed, and the resulting copolymers were analyzed to evaluate the efficacy of each catalyst on the copolymerization. DBTO produced low molecular weight oligomers with Mn ranging from 2,000 to 2,500, whereas TBT produced high molecular weight copolymer Mn ranging from 8,700∼21,900. GC-MS analysis was performed to identify the by-products during the transesterification process, and side reactions such as dehydration were observed, which were in good agreement with previous results showing the same by-product. The correlation spectroscopy (COSY), heteronuclear single-quantum correlation spectroscopy (HSQC), 1H and 13C NMR analyses revealed that the chain end of P13BCT_Sn was primarily composed of the vinyl end group rather than the hydroxyl group, which was a major contributor to the formation of low molecular weight polymers. The density of P13BCT slightly increased with the addition of 1,3-BD. The Tg of P13BCT decreased with 1,3-BD contents from 74 °C to 51 °C due to the enhanced flexibility of the main chain. The thermal stability of the copolyesters was determined using TGA in a nitrogen atmosphere. The copolyesters were stable up to 330?360 °C, and the decomposition temperature decreased as the 1,3-BD content increased. Yield strength increased from 39.4 MPa to 43.6 MPa as 1,3-BD content increased; however, Young’s modulus and yield strength difference was not statistically significant.
- Mulhaupt R, Macromol. Chem. Phys., 214, 159 (2013)
- Shen L, Haufe J, Patel MK, Report for European Polysaccharide Network of Excellence (EPNOE) and European Bioplastics, University Utrecht, Netherlands, 2009.
- Pellis A, Acero EH, Gardossi L, Ferrario V, Guebitz GM, Polym. Int., 65, 861 (2016)
- Vilela C, Sousa AF, Fonseca AC, Serra AC, Coelho JFJ, Freire CSR, Silvestre AJD, Polym. Chem., 5, 3119 (2014)
- Kopke M, Mihalcea C, Liew F, Tizard JH, Ali MA, Conolly JJ, Al-Sinawi B, Simpson SD, Appl. Environ. Microbiol., 77, 5467 (2011)
- Ji XJ, Huang H, Ouyang PK, Biotechnol. Adv., 29, 351 (2011)
- Thiyagarajan S, Vogelzang W, Knoop RJI, Frissen AE, van Haveren J, van Es DS, Green Chem., 16, 1957 (2014)
- Jiang Y, Woortman AJJ, van Ekenstein GORA, Loos K, Polym. Chem., 6, 5198 (2015)
- Debuissy T, Pollet E, Averous L, Polymer, 99, 204 (2016)
- Gubbels E, Jasinska-Walc L, Koning CE, J. Polym. Sci. A: Polym. Chem., 51(4), 890 (2013)
- Hu XR, Shen XL, Huang MF, Liu CH, Geng YT, Wang RG, Xu RW, Qiao H, Zhang LQ, Polymer, 84, 343 (2016)
- Matsuyama A, Yamamoto H, Kawada N, Kobayashi Y, J. Mol. Catal. B: Enzym., 11, 513 (2011)
- Bhatia SK, Bhatia RK, Yang YH, Rev. Environ. Sci. Bio-Technol, 15, 639 (2016)
- Zheng RC, Ge Z, Qiu ZK, Wang YS, Zheng YG, Appl. Microbiol. Biotechnol., 94(4), 969 (2012)
- Kataoka N, Vangnai AS, Tajima T, Nakashimada Y, Kato J, J. Biosci. Bioeng., 115(5), 475 (2013)
- Yang T, Man Z, Rao Z, xu M, Zhang X, Xu Z, J. Ind. Microbiol. Biotechnol., 41, 1743 (2014)
- Oriol-Hemmerlin C, Pham QT, Polymer, 41(12), 4401 (2000)
- Ren ZJ, Dong LS, Yang YM, J. Appl. Polym. Sci., 101(3), 1583 (2006)
- Wang N, Zhang X, Yu J, Fang J, Polym. Compos., 16, 597 (2008)
- Kim JH, Kim JR, Ahn CH, Polymer, 135, 314 (2018)
- Diao L, Su K, Li Z, Ding C, RSC Adv., 6, 27632 (2016)
- Park SA, Choi J, Ju S, Jegal J, Lee KM, Hwang SY, Oh DX, Park J, Polymer, 116, 153 (2017)
- MacDonald WA, Polym. Int., 51, 923 (2002)
- Int. J. Polym. Mater. Polym. Biomater. UK, Int. J. Polym. Mater. Polym. Biomater., 50, 387 (2001)
- Jacquel N, Freyermouth F, Fenouillot F, Rousseau A, Pascault JP, Fuertes P, Saint-Loup R, J. Polym. Sci. A: Polym. Chem., 49(24), 5301 (2011)
- Bersot JC, Jacquel N, Saint-Loup R, Fuertes P, Rousseau A, Pascault JP, Spitz R, Fenouillot F, Monteil V, Macromol. Chem. Phys., 212, 2114 (2011)
- Terzopoulou Z, Karakatsianopoulou E, Kasmi N, Tsanaktsis V, Nikolaidis N, Kostoglou M, Papageorgiou GZ, Lambropoulou DA, Bikiaris DN, Polym. Chem., 8, 6895 (2017)
- Stanley N, Chenal T, Delaunay T, Saint-Loup R, Jacquel N, Zinck P, Polymers, 9, 9 (2017)
- Yoon WJ, Hwang SY, Koo JM, Lee YJ, Lee SU, Im SS, Macromolecules, 46, 7219 (2013)
- Ichikawa N, Sato S, Takahashi R, Sodesawa T, J. Mol. Catal. A: Chem., 256, 106 (2006)
- Nozawa T, Sato S, Takahashi R, Top. Catal., 52, 609 (2009)
- Sato S, Takahashi R, Sodesawa T, Honda N, Shimizu H, Catal. Commun., 4, 77 (2003)
- Sato S, Takahashi R, Sodesawa T, Honda NT, J. Mol. Catal. A-Chem., 221(1-2), 177 (2004)
- Bacaloglu R, Fisch M, Biesiada K, Polym. Eng. Sci., 38(6), 1014 (1998)
- Pilati F, Manaresi P, Fortunato B, Munari A, Monari P, Polymer, 24, 1479 (1983)
- Randall J, Polymer Sequence Determination: Carbon-13 NMR Method, Elsevier Academic, New York, 1977.
- Chen LP, Yee AF, Goetz JM, Schaefer J, Macromolecules, 31(16), 5371 (1998)
- Chen LP, Yee AF, Moskala EJ, Macromolecules, 32(18), 5944 (1999)