- Previous Article
- Next Article
- Table of Contents
Korean Journal of Chemical Engineering, Vol.39, No.3, 461-474, March, 2022
Recent progress in electrochemical reduction of CO2 into formate and C2 compounds
E-mail:,
Global warming and climate change enhanced by the high atmospheric CO2 concentration have been correlated to the frequency of extreme weather causing a significant amount of property damage and loss of human lives. Among current atmospheric CO2 concentration control strategies, the electrochemical reduction of CO2 (eCO2R) process is a promising technology that can utilize CO2 gas as a feedstock to produce valuable C1 and C2 compounds at room temperature. Since the eCO2R reaction is limited by high activation energy and mass transfer, the choice of the electrocatalyst and the configuration of the CO2 electrolyzer have a significant impact on the activity and selectivity of
the eCO2R process. This review discusses current technological advancements of electrocatalytic materials and the design of the gas diffusion electrodes that increase energy efficiency and reduce the mass transfer resistance of the CO2 conversion into C1 with a focus on formate and C2 chemical compounds. A techno-economic analysis is briefly provided, and future and technical challenges of the CO2 conversion at the industrial scale into formate and C2 products are also addressed.
- Lindsey R, National Oceanic and Atmospheric Administration (2020).
- Lathi D, Le Floch M, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF, Nature, 453, 379 (2008)
- Blake ES, Zelinsky DA, National Oceanic and Atmospheric Administration and National Weather Service (2018).
- Murphy JD, National Oceanic and Atmospheric Administration (2018).
- Cangialosi JP, Latto AS, Berg R, National Oceanic and Atmospheric Administration and National Weather Service (2018).
- Pasch RJ, Penny AB, Berg R, National Oceanic and Atmospheric Administration and National Weather Service (2019).
- Flooded future: Global vulnerability to sea level rise worse than previously understood. Climate Central (2019).
- C40 Cities, https://www.c40.org/other/the-future-we-don-twant-staying-afloat-the-urban-response-to-sea-level-rise., 2019.
- Ystad PAM, Bolland O, Hillestad M, Energy Procedia, 23, 33 (2012)
- Dave N, Do T, Palyman D, Feron PHM, Xu S, Gao S, Liu L, Energy Procedia, 4, 1869 (2011)
- McCann M, Phan D, Wang X, Conway W, Burns R, Attalla M, Puxty G, Maeder M, J. Phys. Chem. A, 113, 5022 (2019)
- Caplow M, J. Am. Chem. Soc., 90, 6795 (1968)
- Danckwerts PV, Chem. Eng. Sci., 4, 443 (1979)
- Rezazadeh F, Gale WF, Rochelle GT, Sachde D, Int. J. Greenhouse Gas Control, 58, 246 (2017)
- Karimi M, Hillestad M, Svendsen HF, Energy Procedia, 23, 15 (2012)
- Bert M, Davidson O; de Coninck H, Loos M, Meyer L, Cambridge University Press (2005).
- Celia MA, Nordbotten JM, Bachu S, Dobossy M, Court B, Energy Procedia, 1, 2573 (2009)
- Song J, Zhang D, Environ. Sci. Technol., 47, 9 (2013)
- Kaiser P, Unde RB, Kern C, Jess A, Chem. Ing. Tech., 4, 489 (2013)
- Fisher F, Tropsch H, Brennstoff-Chem, 4, 276 (1923)
- Anderson RB, Catalysts for the Fischer-Tropsch synthesis: Chap. 2 in catalysis, Reinhold Publishing Corp, New York (1956).
- Vayenas C, Modern aspects of electrochemistry, Springer, New York (2008).
- Kuhl KP, Cave ER, Abram DN, Jaramillo TF, Energy Environ. Sci., 5, 7050 (2012)
- Min X, Kanan MW, J. Am. Chem. Soc., 137, 4701 (2015)
- Guo RH, Liu CF, Wei TC, Hu CC, Electrochem. Commun., 80, 24 (2017)
- Valenti M, Prasad NP, Kas R, Bohra D, Ma M, Balasubramanian V, Chu L, Gimenez S, Bisquert J, Dam B, Smith WA, ACS Catal., 9, 3527 (2019)
- Jouny M, Luc W, Jiao F, Ind. Eng. Chem. Res., 57, 2165 (2018)
- Keith DW, Holmes G, Angelo DS, Heidel KA, Joule, 2, 1573 (2018)
- Bolinger M, Seel J, Dana R, Utility-Scale Solar, Empirical Trends in Project Technology, Cost, Performance, and PPA Pricingin the United States ? 2019 Edition. Lawrence Berkeley National Laboratory (2019).
- Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT,Kenis PJA, Masel RI, Science, 334, 643 (2011)
- Manthiram K, Beberwyck BJ, Alivisatos AP, J. Am. Chem. Soc., 136, 13319 (2014)
- Ren D, Ang BS, Yeo BS, ACS Catal., 6, 8239 (2016)
- Dinh CT, Burdyny T, Kibria MG, Seifitokaldani A, Gabardo CM,de Arquer FPG, Kiani A, Edwards JP, Luna PD, Bushuyev OS, Zou C, Quintero-Bermudez R, Pang Y, Sinton D, Sargent EH, Science, 360, 783 (2018)
- Industry - Ethylene and Other Olefins. Dialogue on European Decarbonisation Strategies.
- Zhang BA, Ozel T, Elias JS, Costentin C, Nocera DG, ACS Cent. Sci., 5, 1097 (2019)
- Singh MR, Clarkab EL, Bell AT, Phys. Chem. Chem. Phys., 17, 18924 (2015)
- L?we A, Rieg C, Hierlemann T, Salas N, Kopljar D, Wagner N, Klemm IE, ChemElectroChem, 6, 4497 (2019)
- Xing Z, Hu L, Ripatti DS, Hu X, Feng X, Nat. Commun., 136, 1 (2021)
- Azuma M, Hashimoto K, Watanabe M, Sakata T, J. Electrochem. Soc., 137, 1172 (1990)
- Hegner R, Rosa LFM, Harnisch F, Appl. Catal. B: Environ., 238, 546 (2018)
- Bohlen B, Wastl D, Radomski J, Sieber V, Vieir L, Electrochem. Commun., 110, 106597 (2020)
- Innocent B, Liaigre D, Pasquier D, Ropital F, Leger JM, Kokoh KB, J. Appl. Electrochem., 39, 227 (2009)
- Lv W, Zhang R, Gao P, Lei L, J. Power Sources, 253, 276 (2014)
- Bertin E, Garbarino S, Roy C, Kazemi S, Guay D, J. CO2 Util., 19, 276 (2017)
- Hori Y, Wakebe H, Tsukamoto T, Koga O, Electrochim. Acta, 39, 1833 (1994)
- Feaster JT, Shi C, Cave ER, Hatsukade T, Abram DN, Kuhl KP, Hahn C, Nørskov JK, Jaramillo TF, ACS Catal., 7, 4822 (2017)
- Safaei TS, Mepham A, Zheng X, Pang Y, Dinh CT, Liu M, Sinton D, Kelley SO, Sargent EH, Nano Lett., 16, 7224 (2016)
- Han N, Wang Y, Yang H, Deng J, Wu J, Li Y, Li Y, Nat. Commun., 9, 1320 (2018)
- Chen W, Ji J, Feng X, Duan X, Qian G, Li P, Zhou X, Chen D,Yuan W, J. Am. Chem. Soc., 136, 167369 (2014)
- Perez?Alonso FJ, McCarthy DN, Nierhoff A, Hernandez?Fernandez P, Strebel C, Stephens IEL, Nielsen JH, Chorkendorff I, Angew. Chem.-Int. Edit., 51, 4641 (2012)
- ?vila-Bol?var B, Garc?a-Cruz L, Montiel V, Solla-Gull?n J, Molecules, 24, 2032 (2019)
- Luo W, Xie W, Li M, Zhang J, Z?ttel A, J. Mater. Chem. A, 7, 4505 (2019)
- Qiu Y, Du J, Dai C, Dong W, Tao C, J. Electrochem. Soc., 165, 594 (2018)
- Castillo AD, Alvarez-Guerra M, Irabien A, AIChE J., 60, 3557 (2014)
- Castillo AD, Alvarez-Guerra M, Solla-Gull?n J, S?ez A, Montiel V, Irabien A, Appl. Energy, 157, 165 (2015)
- Castillo AD, Alvarez-Guerra M, Solla-Gull?n J, S?ez A, Montiel V, Irabien A, J. CO2 Util., 18, 222 (2017)
- Lee W, Kim YE, Youn MH, Jeong SK, Park KT, Angew. Chem.-Int. Edit., 57, 6883 (2018)
- Podlovchenko BI, Kolyadko EA, Lu S, J. Electroanal. Chem., 373, 185 (1994)
- Gabrielli C, Grand PP, Lasia A, Perrota H, J. Electrochem. Soc., 115, 1937 (2016)
- Lee CW, Cho NH, Nam KT, Hwang YJ, Min BK, Nat. Commun., 10, 3919 (2019)
- Hammer B, Nørskov JK, Adv. Catal., 45, 71 (2000)
- Kortlever R, Peters I, Koper S, Koper MTM, ACS Catal., 5, 3916 (2015)
- Jiang B, Zhang XG, Jiang K, Wu DY, Cai WB, J. Am. Chem. Soc., 140, 28880 (2018)
- Wang WJ, Hwang S, Kim T, Ha S, Scudiero L, Electrochim. Acta, 387, 138531 (2021)
- Kortlever R, Shen J, Schouten KJP, Calle-Vallejo F, Koper MTM, J. Phys. Chem. Lett., 6, 4073 (2015)
- Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK, Energy Environ. Sci., 3, 1311 (2010)
- Schoute KJP, Kwo Y, van der Ham CJM, Qin HZ, Koper MTM, Chem. Sci. J., 2, 1902 (2011)
- Hori Y, Murata A, Takahashi R, J. Chem. Soc.-Faraday Trans., 85, 2309 (1989)
- Bagger A, Ju W, Varela AS, Strasser P, Rossmeisl J, ChemPhysChem, 18, 3266 (2017)
- Cheng T, Xiao H, Goddard III WA, J. Phys. Chem. Lett., 6, 4767 (2015)
- Lum Y, Cheng T, Goddard III WA, Ager JW, J. Am. Chem. Soc., 140, 9337 (2018)
- Raciti D, Mao M, Park JH, Wang C, J. Electrochem. Soc., 10, 799 (2018)
- Xiao H, Cheng T, Goddard III WA, Sundararaman R, J. Am. Chem. Soc., 138, 483 (2016)
- Liu X, Schlexer P, Xiao J, Ji Y, Wang L, Sandberg RB, Tang M,Brown KS, Peng H, Ringe S, Hahn C, Jaramillo TF, Nørskov JK, Chan K, Nat. Commun., 10, 32 (2019)
- Verma S, Hamasaki Y, Kim C, Huang W, Lu S, Jhong HRM, Gewirth AA, Fujigaya T, Nakashima N, Kenis PJA, ACS Energy Lett., 3, 193 (2018)
- Leonard ME, Clarke LE, Forner-Cuenca A, Brown SM, Brushett FR, ChemSusChem, 13, 400 (2020)
- DeWulf DW, Jin T, Bard AJ, J. Electrochem. Soc., 136, 1686 (1989)
- Hori Y, Takahashi R, Yoshinami Y, Murata A, J. Phys. Chem. B, 101, 7075 (1997)
- Liu Z, Masel RI, Chen Q, Kutz R, Yang H, Lewinski K, Kaplun M, Luopa S, Lutz DR, J. CO2 Util., 15, 50 (2016)
- Kutz RB, Chen Q, Yang H, Sajjad SD, Liu Z, Masel RI, Energy Technol., 5, 929 (2017)
- Zheng T, Jiang K, Ta N, Hu Y, Zeng J, Liu J, Wang H, Joule, 3, 265 (2019)
- Yin Z, Peng H, Wei X, Zhou H, Gong J, Huai M, Xiao L, Wang G, Lu J, Zhuang L, Energy Environ. Sci., 12, 2455 (2019)
- Han L, Zhou W, Xiang C, Energy Lett., 3, 855 (2018)
- Jouny M, Luc W, Jiao F, Nat. Catal, 1, 748 (2018)
- Luc W, Fu X, Shi J, Lv JJ, Jouny M, Ko BH, Xu Y, Tu Q, Hu X, Wu J, Yue Q, Liu Y, Jiao F, Kang Y, Nat. Catal, 2, 423 (2019)