화학공학소재연구정보센터
Macromolecular Research, Vol.30, No.2, 124-135, February, 2022
Effect of the Morphological Characteristic and Composition of Electrospun Polyvinylidene Fluoride/Graphene Oxide Membrane on Its Pb2+ Adsorption Capacity
E-mail:
In this study, the Pb2+ adsorption capacity of electrospun polyvinylidene fluoride/graphene oxide (PVDF/GO) membranes with different morphological characteristics and compositions were comprehensively compared. Firstly, the chemical characteristics, morphological characteristics and hydrophobicity relating to the adsorption capacity of electrospun PVDF/GO membranes were investigated through Fourier transform infrared spectroscopy, Raman spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy and water contact angle measurement. Adsorption analysis showed that the adsorption performance of electrospun PVDF/GO increased as GO contents increased. Variations in the average diameter of electrospun PVDF/GO fibres in the range of several micrometres did not cause a distinguishable change in their adsorption capacity. Electrospun PVDF/GO membranes without a porous structure inhibited a low adsorption capacity although they contained a high composition of GO. The modification of electrospun PVDF/GO membranes by adding PEG increased the distribution of GO on the surface of fibres, resulting in a more hydrophilic fibre surface and a notable increase in Pb2+ adsorption. The adsorption behaviour of Pb2+ onto electrospun PVDF/GO/PEG membranes was found to be dependent on contact time and pH. Reusability analysis indicated that the electrospun PVDF/GO/PEG membrane maintained a Pb2+ removal rate of over 80% after six adsorption-desorption cycles. Therefore, electrospun PVDF/GO/PEG membranes might be a promising adsorption material used in filtration systems for heavy metal removal.
  1. Abu-Nada A, McKay G, Abdala A, Nanomaterials , 10, 595 (2020)
  2. Duru I, Ege D, Kamali AR, J. Mater. Sci., 51, 6097 (2016)
  3. Smith AT, LaChance AM, Zeng S, Liu B, Sun L, Nano Mater. Sci., 1, 31 (2019)
  4. Ahmad SZN, Salleh WNW, Ismail AF, Yusof N, Yusop MZM, Aziz F, Chemosphere, 248, 126008 (2020)
  5. Mao B, Sidhureddy B, Thiruppathi AR, Wood PC, Chen A, New J. Chem., 44, 4519 (2020)
  6. Yadav S, Goel N, Kumar V, Singhal S, Anal.Chem. Lett., 9, 291 (2019)
  7. Romanchuk A, Slesarev A, Kalmykov S, Kosynkin D, Tour J, Phys. Chem. Chem. Phys., 15, 2321 (2013)
  8. Showalter AR, Duster TA, Szymanowski JES, Na C, Fein JB, Bunker BA, Phys. Conf. Ser.(712), 12094 (2016)
  9. Peng W, Li H, Liu Y, Song S, Appl. Surf. Sci., 364, 620 (2016)
  10. Bulbula ST, Dong Y, Lu Y, Yang XY, Chem. Lett., 47, 210 (2018)
  11. Xiaohong L, Wang Z, Li Q, Ma J,Mingzi ZJCEJ, Chem. Eng. J., 273, 630 (2015)
  12. Sharma P, Singh AK, Shahi VK, ACS Sustain. Chem. Eng., 7, 1427 (2018)
  13. Guo T, Bulin C, Li B, Zhao Z, Yu H, Sun H, Ge X, Xing R, Zhang B, Adsorp. Sci. Technol., 36, 1031 (2017)
  14. Vo TS, Hossain MM, Jeong HM, Kim K, Nano Converg., 7, 36 (2020)
  15. Haider S, Park SY, J. Memb. Sci., 328, 90 (2009)
  16. Ullah S, Hashmi M, Hussain N, Ullah A, Sarwar MN, Saito Y, Kim SH, Kim IS, J. Water Process Eng., 33, 101111 (2020)
  17. Wang P, Wang L, Dong S, Zhang G, Shi X, Xiang C, Li L, New J. Chem., 42, 17740 (2018)
  18. Wang X, Min M, Liu Z, Yang Y, Zhou Z, Zhu M, Chen Y, Hsiao BS, J. Memb. Sci., 379, 191 (2011)
  19. Feng Q, Wu D, Zhao Y, Wei A, Wei Q, Fong H, J. Hazard Mater., 344, 819 (2018)
  20. Kampalanonwat P, Supaphol P, Energy Procedia, 56, 142 (2014)
  21. Sehaqui H, de Larraya UP, Liu P, Pfenninger N, Mathew AP, Zimmermann T, Tingaut P, Cellulose, 21, 2831 (2014)
  22. Haddad MY, Alharbi HF, J. Appl. Polym. Sci., 136, 47209 (2019)
  23. Parlay��c�� S, Avc�� A, Pehlivan E, Anal. Sci. Technol., 10, 13 (2019)
  24. Ramazani S, Karimi M, Polym. (Koeea), 37, 131 (2016)
  25. Najafabadi HH, Irani M, Rad LR, Haratameh AH, Haririan I, J. Anal. Sci. Technol., 5, 16532 (2015)
  26. Jeong HY, Jang WG, Yun JH, Byun HS, Polymer (Korea), 40, 489 (2016)
  27. Tan P, Wen J, Hu Y, Tan X, RSC Adv., 6, 79641 (2016)
  28. Mohamadi S, in Infrared Spectroscopy ? Materials Science, Engineering and Technology, Theophanides T, Eds., IntechOpen, Croatia, p. 213?232, 2012,
  29. Kaspar P, Sobola D, Castkova K, Knapek A, Burda D, Orudzhev F, Dallaev R, Tofel P, Trcka T, Grmela L, Hadas Z, Polymers (Basel), 12, 2766 (2020)
  30. Ramesh D, D��Souza NA, Mater. Res. Express, 5, 85308 (2018)
  31. Park HS, Choi BG, Hong WH, Jang SY, J. Colloid Interface Sci., 406, 24 (2013)
  32. Obaid M, Kang Y, Wang S, Yoon MH, Kim CM, Song JH, Kim IS, J. Mater. Chem. A, 6, 11700 (2018)
  33. Cheong YK, Arce MP, Benito A, Chen D, Crisostomo NL, Kerai LV, Rodriguez G, Valverde JL, Vadalia M, Cerpa-Naranjo A, Ren G, Nanomaterials-Basel, 10, 819 (2020)
  34. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS, Adv. Mater., 22, 3906 (2010)
  35. Nguyen TTT, Park JS, J. Appl. Polym. Sci., 121, 3596 (2011)
  36. Yeow ML, Liu YT, Li K, J. Appl. Polym. Sci., 90, 2150 (2003)
  37. Sabetzadeh N, Gharehaghaji A, J. Text. Polym., 5, 3 (2017)
  38. Moradi R, Karimi-Sabet J, Shariaty-Niassar M, Koochaki MA, Polymers (Basel), 7, 1444 (2015)
  39. Agyemang FO, Li F, Momade FWY, Kim H, Mater. Chem. Phys., 182, 208 (2016)