화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.108, 72-80, April, 2022
Redox/pH-dual responsive functional hollow silica nanoparticles for hyaluronic acid-guided drug delivery
E-mail:
Stimuli-responsive nanocarriers have been studied for controlling release kinetics while minimizing the undesired leakage of loaded molecules. Hollow mesoporous silica nanoparticles (HMSNs) have been used as carriers because of their biocompatibility, porosity, high surface area, and ease of chemical modification. Moreover, introducing targeting moieties onto the HMSNs enables targeted delivery to designated sites. Here, we designed dual-responsive HMSNs capped with various molecular weights of hyaluronic acid (HA) to control the drug loading quantity and enhance the targeting efficiency. The dualresponsive HMSNs were synthesized via sequential surface grafting processes, which include thiol groups, amine groups, and capping agents (denoted as HMSN-SH, HMSN-SS-NH2, and HMSN-SS-HA, respectively). The modified HMSNs were further functionalized with HA to increase the cancertargeting efficiency for CD44-rich cancer cells. This functionalized HMSN showed 1.2–2.3 times increased drug release efficiency under redox/pH-dual stimuli compared to each stimulus. As a result, the HMSNs were internalized by cancer cells rather than normal cells; consequently, more drugs were delivered to cancer cells. We suggest that the proposed HMSN-SS-HA would be a suitable carrier for enhancing drug delivery efficiency with targeting/stimuli-responsive functionalities.
  1. Huang HC, Barua S, Sharma G, Dey SK, Rege K, J. Control. Release, 155, 344 (2011)
  2. Irvine DJ, Nat. Mater., 10, 342 (2011)
  3. Yohan D, Chithrani BD, J. Biomed. Nanotechnol., 10, 2371 (2014)
  4. Ricci V, Zonari D, Cannito S, Marengo A, Scupoli MT, Malatesta M, Arpicco S, J. Colloid Interface Sci., 516, 484 (2018)
  5. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J, J. Control. Release, 200, 138 (2015)
  6. Liang Z, Lu Z, Zhang Y, Shang D, Li R, Liu L, Liu H, Curr. Cancer Drug Targets, 19, 449 (2019)
  7. Senapati S, Mahanta AK, Kumar S, Maiti P, Signal Transduct. Target Ther., 3, 1 (2018)
  8. Yu M, Jambhrunkar S, Thorn P, Chen J, Gu W, Yu C, Nanoscale, 5, 178 (2013)
  9. Lee S, Kwon JA, Park KH, Jin CM, Joo JB, Choi I, Eur. J. Pharm. Biopharm., 131, 232 (2018)
  10. Yoon S, Chung Y, Lee JW, Chang J, Han JG, Lee JH, Biochip J., 13, 362 (2019)
  11. Nguyen TNT, Le NTT, Nguyen NH, Ly BTK, Nguyen TD, Nguyen DH, Microporous Mesoporous Mater., 309 (2020)
  12. Tang F, Li L, Chen D, Adv. Mater., 24, 1504 (2012)
  13. Lee JY, Kim MK, Nguyen TL, Kim J, ACS Appl. Mater. Interfaces, 12, 34658 (2020)
  14. Ahangaran F, Navarchian AH, Adv. Colloid Interface Sci., 286, 102298 (2020)
  15. Cheng F, Sajedin SM, Kelly SM, Lee AF, Kornherr A, Carbohydr. Polym., 14, 246 (2014)
  16. Cai D, Han C, Liu C, Ma X, Qian J, Zhou J, Zhu W, Nanoscale Res. Lett., 15, 1 (2020)
  17. Geng H, Chen W, Xu ZP, Qian G, An J, Zhang H, Chem.-Eur. J., 23, 10878 (2017)
  18. Yan T, He J, Liu R, Liu Z, Cheng J, Carbohydr. Polym., 231 (2020)
  19. Huang L, Liu J, Gao F, Cheng Q, Lu B, Zheng H, Zeng X, J. Mater. Chem. B, 6, 4618 (2018)
  20. Zhao Q, Wang S, Yang Y, Li X, Di D, Zhang C, Wang S, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 78, 475 (2017)
  21. Zhang Y, Ang CY, Li M, Tan SY, Qu Q, Luo Z, Zhao Y, ACS Appl. Mater. Interfaces, 7, 18179 (2015)
  22. Zhang Y, Hsu BYW, Ren C, Li X, Wang J, Chem. Soc. Rev., 44, 315 (2015)
  23. Mura S, Nicolas J, Couvreur P, Nat. Mater., 12, 991 (2013)
  24. Zhang L, Guo R, Yang M, Jiang X, Liu B, Adv. Mater., 19, 2988 (2007)
  25. Asgari M, Soleymani M, Miri T, Barati A, Polym. Adv. Technol., 32(10), 4101 (2021)
  26. Li X, Xie C, Xia H, Wang Z, Langmuir, .4, 9974 (2018)
  27. Zhu YJ, Chen F, Chem. Asian J., 10, 284 (2015)
  28. Yan Y, Ding H, Nanomaterials, 10, 1613 (2020)
  29. Yuan L, Tang Q, Yang D, Zhang JZ, Zhang F, Hu J, J. Phys. Chem. C, 115, 9926 (2011)
  30. Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z, J. Control. Release, 152, 2 (2011)
  31. Tsai CP, Chen CY, Hung Y, Chang FH, Mou CY, J. Mater. Chem., 19, 5737 (2009)
  32. Zhao Q, Liu J, Zhu W, Sun C, Di D, Zhang Y, Wang P, Wang Z, Wang S, Acta Biomater., 23, 147 (2015)
  33. Wang Z, Tian Y, Zhang H, Qin Y, Li D, Gan L, Wu F, Int. J. Nanomed., 11, 6485 (2016)
  34. Yaraki MT, Tayebi M, Ahmadieh M, Tahriri M, Vashaee D, Tayebi L, J. Alloy. Compd., 690, 749 (2017)
  35. Toole BP, Nat. Rev. Cancer, 4, 528 (2004)
  36. Lee S, Lee Y, Kim EM, Nam KW, Choi I, ACS Appl. Polym. Mater., 2, 342 (2019)
  37. Auzenne E, Ghosh SC, Khodadadian M, Rivera B, Farquhar D, Price RE, Klostergaard J, Neoplasia, 9, 479 (2007)
  38. Peer D, Margalit R, Int. J. Cancer, 108, 780 (2004)
  39. Luo Y, Prestwich GD, Bioconjugate Chem., 10, 755 (1999)
  40. Mironov V, Kasyanov V, Shu XZ, Eisenberg C, Eisenberg L, Gonda S, Prestwich GD, Biomaterials, 26, 7628 (2005)
  41. Lee H, Lee K, Kim IK, Park TG, Biomaterials, 29, 4709 (2008)
  42. Choi KY, Chung H, Min KH, Yoon HY, Kim K, Park JH, Jeong SY, Biomaterials, 31, 106 (2010)
  43. Necas J, Bartosikova L, Brauner P, Kolar J, Vet. Med., 53, 397 (2008)
  44. Koh I, Kim P, BioChip J., 13, 1 (2019)
  45. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B, Cell, 61, 1303 (1990)
  46. Lapcık L Jr, Lapcık L, De Smedt S, Demeester J, Chabrecek P, Chem. Rev., 98, 2663 (1998)
  47. Almalik A, Day PJ, Tirelli N, Macromol. Biosci., 13, 1671 (2013)
  48. Cui Y, Dong H, Cai X, Wang D, Li Y, ACS Appl. Mater. Interfaces, 4, 3177 (2012)
  49. Pampaloni F, Reynaud EG, Stelzer EH, Nat. Rev. Mol. Cell Biol., 8, 839 (2007)
  50. Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA, Nat. Protoc., 4, 309 (2009)
  51. Young EW, Integr. Biol., 5, 1096 (2013)
  52. Tung YC, Hsiao AY, Allen SG, Torisawa YS, Ho M, Takayama S, Analyst, 136, 473 (2011)
  53. An HJ, Kim HS, Kwon JA, Song J, Choi I, ACS Appl. Mater. Interfaces, 12, 6924 (2020)