화학공학소재연구정보센터
Polymer(Korea), Vol.46, No.2, 257-265, March, 2022
탄산음료용 PET병 연신 블로우 성형의 실험 및 컴퓨터 모사
Experimental and Computer Simulation of Stretch Blow Molding for Carbonated Soft Drink PET Bottle
E-mail:
초록
탄산음료병용의 polyethylene terephthalate(PET)병은 프리폼의 연신 블로우로 성형된다. 본 연구에서는 실험 을 통해 연신 블로우 공정에서 프리폼이 블로잉 되어 내압 PET병이 성형되는 과정을 파악하였다. 그리고 병의 위 치별 두께 분포와 연신비를 측정하였다. 실험에서 사용한 프리폼과 공정 조건을 적용하여 내압병의 연신 블로우 성 형을 컴퓨터 해석하였다. 해석에서는 PET의 물성에 따라 성형된 병의 두께 및 연신비 분포, 프리폼의 금형 접촉 시 점, 프리폼 위치별 성형경로를 비교하였다. 그리고 실험과 해석의 두께분포, 연신비를 비교하였다.
Polyethylene terephthalate (PET) bottles for carbonated soft drink are fabricated by stretch blowing of preforms. In this study, the shaping process of pressure-resistant PET bottles by blowing preforms in the stretch blowing process was examined through experiments. Then, the thickness distribution and the stretch ratio for each location of the blown bottle were measured. Computer simulation of the stretch blow molding of the pressure-resistant bottle was performed by applying the preform and process conditions used in the experiment. In the simulation, the thickness and stretch ratio distributions of the blown bottle, the mold contact point of preform during blowing process, and the blowing path by location of preform were compared according to the physical properties of PET. Finally, the thickness distribution, stretch ratio of the blown bottle were compared through experiment and simulation.
  1. Lyu MY, Kim HC, Lee JS, Shin HC, Pae Y, Int. Polym. Process., 16, 72 (2001)
  2. Brandau O, Stretch Blow Molding; William Andrew: New York, pp 27-48, 2016.
  3. Lyu MY, Polym. Sci. Technol., 14, 668 (2003)
  4. Schmidt FM, Agassant JF, Bellet M, Polym. Eng. Sci., 38, 1399 (1998)
  5. Joo ST, Kim YH, Lyu MY, Trans. Mater. Process., 10, 525 (2001)
  6. Thibault F, Malo A, Lanctot B, Diraddo R, Polym. Eng. Sci., 47, 289 (2007)
  7. Bordival M, Schmidt FM, Maoult YL, Velay V, Polym. Eng. Sci., 49, 783 (2009)
  8. Cho SH, Hong JS, Lyu MY, Polym. Korea, 35, 467 (2011)
  9. DeLorenzi HG, Taylor CA, Int. Polym. Process., 8, 365 (1993)
  10. Nixon J, Menary GH, Yan S, Int. J. Mater. Form, 10, 765 (2017)
  11. Daver F, Demirel BA, J. Mater. Process. Technol., 212, 2400 (2012)
  12. White JL, Principles of Polymer Engineering Rheology; Wiley: New York, pp 33-37, 1990.
  13. Lyu MY, White JL, Int. Polym. Process., 10, 305 (1995)
  14. Macosko CW, Rheology: Principles, Measurement, and Applications, Wiley: New York, pp 45-52, 1994.
  15. Kim YG, Kang PS, Lim JS, J. Korean Soc. Miner. Energy Resour. Eng., 54, 512 (2017)
  16. Jang SS, Sakong J, Choi W, Kim TW, Trans. Korean Soc. Mech. Eng. A., 43, 611 (2019)
  17. Ansari MA, Cameron MR, Jabarin SA, Biaxial Stretching of Film; Woodhead: Cambridge, pp 151-159, 1998.
  18. Onyishi HO, Oluah CK, Ph. Transit., 93, 924 (2020)
  19. Lee JG, Park SH, Kim SH, Polym. Korea, 34, 579 (2010)