화학공학소재연구정보센터
Polymer(Korea), Vol.46, No.2, 295-299, March, 2022
이중층 폴리피롤 복합재료 지지체
Polypyrrole/Poly(1-(2-carboxyehtyl)pyrrole) Bilayered Composite Scaffold for Cell Adhesion
E-mail:
초록
전도성 고분자-폴리피롤은 화학구조상 공유결합을 할 수 있는 작용기가 존재하지 않는다. 이에 상용 1-(2-cyanoethyl)- pyrrole을 가수분해 반응시켜 카복실산 작용기를 갖는 피롤 유도단량체를 합성하고 이를 폴리피롤의 표면상에서 전기화 학적으로 고분자 중합하여, 이중층으로 구성된 전도성 복합재 료 지지체를 개발하였다. 지지체 표면에 도입한 카복실산 작 용기와 조직인식(Arg-Gly-Asp(RGD)를 포함하는)-올리고펩타 이드를 선택적으로 화학결합시킨 후, 모델 세포조직-인간 제 대혈관 내피세포(HUVEC)의 흡착 및 증식정도에 대한 정성 및 정량평가를 통해 생물학적 활성이 증진됨을 확인할 수 있 었다. 따라서, 이상에서 개발된 전도성 폴리피롤 복합재료는 조직공학을 위한 생체모사용 지지체로서 다양한 플랫폼 역할 을 할 것으로 기대된다.
Polypyrrole/poly(1-(2-carboxyethyl)pyrrole) (PPy/ PPyCOOH) bilayered composite is demonstrated as a platform for surface modification and cell attachment. The composite is developed by polymerizing 1-(2-carboxyethyl)pyrrole onto the surface of PPy film using an electrochemical layer-by-layer deposition technique. FTIR and X-ray photoelectron spectroscopy (XPS) are used to determine the presence of carboxylic acid functionality (-COOH) at the PPyCOOH layer surface of the bilayered composite. A four-point probe analysis is used to verify electrical conductivity in the semiconductor range. The carboxylic acid functionality is further tailored by chemically conjugating a cell-adhesive Arg-Gly-Asp (RGD)-containing oligopeptide, GRGDSP, onto the PPyCOOH surface of the composite. Human umbilical vein endothelial cells (HUVECs) cultured on the RGD-grafted composite successfully demonstrate the improved cell adhesion and spreading compared with an ungrafted control PPy/PPyCOOH.
  1. Li J, Lin X, Biosens. Bioelectron., 22, 2898 (2007)
  2. Poole-Warren L, Lovell N, Baek S, Expert Rev. Med. Devic., 7, 35 (2010)
  3. Shirakawa H, Angew. Chem.-Int. Edit., 40, 2574 (2001)
  4. Guimard NK, Gomez N, Schmidt CE, Prog. Polym. Sci, 32, 876 (2007)
  5. Skotheim TA, Elsenbaumer RL, Reynolds JR, Handbook of Conducting Polymers, 2nd ed., Marcel Dekker, New York, 1998.
  6. Lee JW, Serna F, Schmidt CE, Langmuir, 22, 9816 (2006)
  7. McCarley RL, Willicut RJ, J. Am. Chem. Soc., 120, 9296 (1998)
  8. Mecerreyes D, Pomposo JA, Bengoetxea M, Grande H, Macromolecules, 33, 5846 (2000)
  9. Lee JW, Polym. Korea, 41, 367 (2017)
  10. O’Brien FJ, Mater. Today, 14, 88 (2011)
  11. Nikolova MP, Chavali MS, Bioact. Mater., 4, 271 (2019)
  12. Rowlands AS, Lim SA, Martin D, Cooper-White JJ, Biomaterials, 28, 2109 (2007)
  13. Chaudhari AA, Vig K, Baganizi DR, Sahu R, Dixit S, Dennis V, Singh SR, Pillai SR, Int. J. Mol. Sci., 17, 1974 (2016)
  14. Munir N, McDonald A, Callanan A, ACS Omega, 5, 12623 (2020)
  15. Yao Q, Nooeaid P, Detsch R, Roether JA, Dong Y, Goudouri OM, Schubert DW, Boccaccini AR, J. Biomed. Mater. Res. Pt. A, 102, 4510 (2014)
  16. Landry MJ, Rollet FG, Kennedy TE, Barrett CJ, Langmuir, 34, 8709 (2018)
  17. Karazehir T, Gokce ZG, Ates M, Sarac AS, EXPRESS Polym. Lett., 11, 449 (2017)
  18. Azioune A, Slimane AB, Hamou LA, Pleuvy A, Chehimi MM, Perruchot C, Armes SP, Langmuir, 20, 3350 (2004)
  19. Wong JY, Langer R, Ingber DE, Proc. Natl. Acad. Sci. U. S. A., 91, 3201 (1994)
  20. Diaz AF, Castillo JA, Logan JA, Lee WY, Electroanalysis, 129, 115 (1981)
  21. Hoelzle MK, Svitkina T, Mol. Biol. Cell, 23, 310 (2012)
  22. Cory AH, Owen TC, Barltrop JA, Cory JG, Cancer Commun., 3, 207 (1991)