Macromolecular Research, Vol.30, No.3, 172-182, March, 2022
Effect of β-Chain Alignment Degree on the Performance of Piezoelectric Nanogenerator Based on Poly(Vinylidene Fluoride) Nanofiber
E-mail:,
This work demonstrated the effect of the β-chain alignment degree on piezoelectric nanogenerator (PNG) performance. A simple, safe and low-cost fast-centrifugal spinning technique was used to produce self-poled poly(vinylidene fluoride) (PVDF) nanofiber. PNG based on acetone-prepared PVDF fibers, with high β-chain alignment, generated output open-circuit voltage (VOC) and short-circuit current (ISC) five times higher than the film counterpart. In addition, the fibers showed a remarkable increase in β-chain alignment degree as the ratio of N,N-dimethylformamide (DMF) solvent increased. The optimum nanofiber with the highest β-chain alignment degree, β-fraction and piezoelectric charge coefficient of 0.93, 91.8% and -120 pC.N− was obtained, respectively. PNG based on the optimum fiber displayed the highest VOC, ISC and power density of 14 V, 1.4 µA and 6.7 µWcm−2, respectively. This performance is greater than any PNG made from electrospun PVDF fiber. The excellent performance of the fabricated PNGs was strongly related to the high alignment degree of β-chains parallel along the fiber axis. In addition, due to low Young’s modulus (1.63 MPa) of the optimum fibers, the related lead-free PNG is sensitive to small movements and can be used in wearable and implanted medical devices.
Keywords:β-chain alignment degree;dipole re-orientation;Young’s modulus;self-poled PVDF nanofibers;ferroelectric properties;highperformance flexible PNG
- Sivaraj P, Abhilash KP, Nalini B, Perumal P, Somasundaram K, Selvin PC, Macromol. Res., 28, 739 (2020)
- Panigrahi BK, Sitikantha D, Bhuyan A, Panda HS, Mohanta K, Mater. Today Proc., 41, 335 (2019)
- Mistewicz K, Jesionek M, Kim HJ, Hajra S, Koziol M, Chrobok L, Wang X, Ultrason. Sonochem., 78, 105718 (2021)
- Hajra S, Sahu M, Oh D, Kim HJ, Ceram. Int., 47, 15695 (2021)
- Vivekananthan V, Alluri NR, Purusothaman Y, Chandrasekhar A, Kim SJ, Nanoscale, 9, 15122 (2017)
- Sahu M, Hajra S, Lee K, Deepti P, Mistewicz K, Kim HJ, Cyrystals, 11, 85 (2021)
- Lee JH, Kim SJ, Park JS, Kim JH, Macromol. Res., 24, 909 (2016)
- Dhatarwal P, Sengwa RJ, Macromol. Res., 27, 1009 (2019)
- Jeong H, Baek S, Han S, Jang H, Rockson TK, Lee HS, Macromol. Res., 26, 493 (2018)
- Xia W, Xie M, Feng X, Chen L, Zhao Y, Macromol. Res., 26, 1225 (2018)
- Maity K, Ghosh SK, Xie M, Bowen CR, Mandal D, Design of Flexible Piezoelectric-Pyroelectric Nanogenerator for Self-powered Wearable Sensor, in AIP Conference Proceedings, American Institute of Physics Inc., Vol. 2115, 2019.
- Tamil, Jayathilaka WADM, Hilaal A, Ramakrishna S, Int. J. Nanosci., 19 (2020)
- Bae A, Compos. Part B: Eng., 99, 112 (2016)
- Baniasadi M, Xu Z, Moreno S, Daryadel S, Cai J, Naraghi M, Minary-Jolandan M, Polymer, 118, 223 (2017)
- Chen X, Tseng JK, Treufeld I, Mackey M, Schuele DE, Li R, Fukuto M, Baer E, Zhu L, J. Mater. Chem. C, 5, 10417 (2017)
- Bi X, Song S, Sun S, Macromol. Res., 25, 1163 (2017)
- Chang HH, Chang LK, Yang CD, Lin DJ, Cheng LP, Polymer, 115, 164 (2017)
- Branciforti MC, Sencadas V, Lanceros-Mendez S, Gregorio R, J. Polym. Sci. B: Polym. Phys., 45, 2793 (2007)
- Chen X, Song Y, Su Z, Chen H, Cheng X, Zhang J, Han M, Zhang H, Nano Energy, 38, 43 (2017)
- Sathiyanathan P, Prabu AA, Kim KJ, Macromol. Res., 24, 670 (2016)
- Sathiyanathan P, Dhevi DM, Prabu AA, Kim KJ, Macromol. Res., 27, 743 (2019)
- Huan Y, Zhang X, Song J, Zhao Y, Wei T, Zhang G, Wang X, Nano Energy, 50, 62 (2018)
- Ibtehaj K, Jumali MHH, Al-Bati S, Polymer, 208, 122956 (2020)
- Maji S, Sarkar PK, Aggarwal L, Ghosh SK, Mandal D, Sheet G, Acharya S, Phys. Chem. Chem. Phys., 17, 8159 (2015)
- Tashiro K, Kobayashi M, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 50, 1573 (1994)
- Weng B, Xu F, Garza G, Alcoutlabi M, Salinas A, Lozano K, Polym. Eng. Sci., 55, 81 (2015)
- Liew WH, Mirshekarloo MS, Chen S, Yao K, Tay FEH, Sci. Rep., 5, 09790 (2015)
- Ren L, Pandit V, Elkin J, Denman T, Cooper JA, Kotha SP, Nanoscale, 5, 2337 (2013)
- Conte AA, Shirvani K, Hones H, Wildgoose A, Xue Y, Najjar R, Hu X, Xue W, Beachley VZ, Polymer, 171, 192 (2019)
- Adhikary P, Mandal D, Phys. Chem. Chem. Phys., 19, 17789 (2017)
- Jana S, Garain S, Sen S, Mandal D, Phys. Chem. Chem. Phys., 17, 17429 (2015)
- Pusty M, Sinha L, Shirage PM, New J. Chem., 43, 284 (2019)
- Li C, Boban M, Snyder SA, Kobaku SPR, Kwon G, Mehta G, Tuteja A, Adv. Funct. Mater., 26, 6121 (2016)
- Soin N, Shah TH, Anand SC, Geng J, Pornwannachai W, Mandal P, Reid D, Sharma S, Hadimani RL, Bayramol DV, Siores E, Energy Environ. Sci., 7, 1670 (2014)
- Karan SK, Bera R, Paria S, Das AK, Maiti S, Maitra A, Khatua BB, Adv. Energy Mater., 6, 1601016 (2016)
- Adhikary P, Garain S, Mandal D, Phys. Chem. Chem. Phys., 17, 7275 (2015)
- Prabu AA, Lee JS, Kim KJ, Lee HS, Vib. Spectrosc., 41, 1 (2006)
- Andrews L, Johnson GL, J. Phys. Chem., 88, 425 (1984)
- Petit S, Madejova J, in Developments in Clay Science, Elsevier, Amsterdam, Vol. 5, Chap. 2.7, pp 213-231, 2013.
- Gedde UW, Hedenqvist MS, Fundamental Polymer Science, 2nd ed., Springer International Publishing, Cham, Switzerland, 2019.
- Forde NR, Butler LJ, Abrash SA, J. Chem. Phys., 110, 8954 (1999)
- Eggers J, Mod. Phys., 69, 865 (1997)
- You S, Zhang L, Gui J, Cui H, Guo S, Micromachines, 10, 302 (2019)
- Hu P, Zheng D, Zhao C, Zhang Y, Niu J, Mater. Lett., 218, 71 (2018)
- Fuh YK, Huang ZM, Wang BS, Li SC, Nanoscale Res. Lett., 12, 44 (2017)
- Nam ND, Moon W, J. Sens. Sci. Technol., 28, 205 (2019)