화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.109, 182-188, May, 2022
Synthesis, antibacterial activity, and enzymatic decomposition of bio-polyurethane foams containing propolis
E-mail:
Polyurethane foam (PUF) is formed by reacting sugar, propolis, and polyisocyanate, and then blowing with CO2, formed by reacting polyisocyanate with water. An optimum foaming rate of 1440% was found for 15 wt.% of sugar and 20 wt.% of propolis, and the synthesis and cell structure of polyurethane were analyzed by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Under the optimized conditions, the apparent density and thermal conductivity of the PUF-containing propolis were 0.04 – 0.147 g/mL and 0.028 – 0.029 W/(mK), respectively. The bacterial reduction rate was 92.7% in the PUF containing 20 wt.% propolis. PUF can be broken down by enzymatic reactions in water using invertase. The degradation reaction of invertase was kinetically analyzed. This study showed that eco-friendly polymers can be synthesized using sugar and propolis and decomposed through antibacterial activity and enzymatic green recycling.
  1. Burdock GA, Food Chem. Toxicol., 36, 347 (1998)
  2. Wagh VD, Adv. Pharmacol. Sci., 2013, 308249 (2013)
  3. Boisard S, Le Ray AM, Gatto J, Aumond MC, Blanchard P, Derbre S, Flurin C, Richomme P, J. Agric. Food Chem., 62, 1344 (2014)
  4. Kumazawa S, Hamasaka T, Nakayama T, Food Chem., 84, 329 (2004)
  5. Fernández SG, Ugarte L, Correas TC, Rodríguez CP, Corcuera MA, Eceiza A, Ind. Crop. Prod., 100, 51 (2017)
  6. Agrawal A, Kaur R, Walia RS, Eur. Polym. J., 95, 255 (2017)
  7. Kurimoto Y, Koizumiet A, Doi S, Tamura Y, Ono H, Biomass Bioenerg., 21, 381 (2001)
  8. Jo YJ, VuLy H, Kim J, Kim SS, Lee EY, J. Ind. Eng. Chem., 29, 304 (2015)
  9. Jeong J, Kim WS, Lee MW, Goh M, ACS Omega, 6, 10745 (2021)
  10. Galbis JA, García-Martín MG, de Paz MV, Galbis E, Chem. Rev., 116, 1600 (2016)
  11. Tang M, White AJP, Stevens MM, Williams C, Chem. Commun., 2009, 941 (2009)
  12. Qi P, You C, Zhang YHP, ACS Catal., 4, 1311 (2014)
  13. Yang W, Dong Q, Liu S, Xie H, Liu L, Li J, Proc. Environ. Sci., 16, 167 (2012)
  14. Audrey M, Lisa E, Alfred B, Eric P, Luc A, ChemSusChem, 14, 4234 (2021)
  15. Bhuyan DJ, Alsherbiny MA, Low MN, Zhou X, Kaur K, Li G, Li CG, Food Funct., 12, 2498 (2021)
  16. Kasprzak MM, Erxleben A, Ochocki J, RSC Adv., 5, 45853 (2015)
  17. Tan P, Li YH, Liu XQ, Jiang Y, Sun LB, A.C.S. Sustain. Chem. Eng., 4, 3268 (2016)
  18. Alavi M, Karimi N, Valadbeigi T, A.C.S. Biomater. Sci. Eng., 5, 4228 (2019)
  19. Kim DH, Lee M, Goh M, A.C.S. Sustain. Chem. Eng., 8, 2433 (2020)
  20. Baranovic G, Šegota S, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 192, 473 (2018)
  21. Liu H, Zhou Q, Sun S, Bao H, J. Mol. Struct., 883, 38 (2008)
  22. Saddik MS, Alsharif FM, El-Mokhtar MA, Al-Hakkani MF, El-Mahdy MM, Farghaly HS, Abou-Taleb HA, AAPS PharmSciTech, 21, 175 (2020)
  23. Yuan W, Fan W, Mu Y, Meng D, Yan Z, Li Y, Lv Z, Ind. Crop. Prod., 164, 113385 (2021)
  24. Gangurde AB, Ali MT, Pawar JN, Amin PD, Int. J. Pharm. Investig., 47, 559 (2017)
  25. Pérez-Monterroza EJ, Chaux-Gutiérrez AM, Franco CML, Nicoletti VR, Food Biophys., 13, 343 (2018)
  26. Ramezani M, Hesami MD, Rafiei Y, Ghareghozloo ER, Meratan AA, Nikfarjam N, ACS Appl. Bio Mater., 4, 3547 (2021)
  27. de Moura SCSR, Berling CL, Germer SPM, Alvim ID, Hubinger MD, Food Chem., 241, 317 (2018)
  28. Górniak I, Bartoszewski R, Króliczewski J, Phytochem Rev., 18, 241 (2019)
  29. Almuhayawi MS, Saudi, J. Biol. Sci., 27, 3079 (2020)
  30. Yuan G, Guan Y, Yi H, Lai S, Sun Y, Cao S, Sci. Rep., 11, 10471 (2021)
  31. Kim DH, Yu A, Goh M, J. Ind. Eng. Chem., 96, 76 (2021)