Journal of Industrial and Engineering Chemistry, Vol.109, 330-337, May, 2022
Manganese single-atom nanostructures for highly efficient tumor therapy
E-mail:
The single-atom attracts growing interests in various fields and provides a new strategy for tumor therapy by inspiring chemodynamic-photothermal therapy (CPT) effects owing to its excellent catalytic properties. We synthesize the Folic acid@single atomic manganese (Mn) nanoparticles (FA@SAMn NPs) with mesoporous carbon sphere structure by the coordination aided polymerization assembly method. Antitumor therapeutic effect studies were carried out in vitro and in vivo. This hierarchical nanostructure possesses a high surface area, large pore, and rich N that provide higher catalytic activity, and it also exhibits excellent activity and stability in the oxygen reduction reaction. With its accumulation in the specific tumor microenvironment, the FA@SAMn NPs could generate reactive oxygen species (ROS), which would mediate a series of 4 T1 cell damage and inhibit tumor propagation (56% mortality rate). Moreover, the FA@SAMn NPs possess an excellent photothermal effect under near infrared-II (NIR-II) laser irradiation. This leads to a local hyperthermia situation in the tumor area and contributes to tumor inhibition (91% mortality rate). In sum, FA@SAMn catalysts effectively suppressed tumor growth and significantly increased the survival time. This work aims to provide new potential single-atom-coordinated carbon networks that possess efficient biocatalytic sites and photothermal effects, inspiring a series of advances in ROS and photothermal-related biological applications across broad biomedical fields.
Keywords:Manganese single-atom;Chemotherapy-photothermal therapy;Near infrared-II laser;Tumor therapy
- Zheng C, Li M, Ding J, BIO Integr., 2(2), 57 (2021)
- Jia X, Zhang Y, Zou Y, et al., Adv. Mater., 30(30), 1704490 (2018)
- Yue S, Li Y, Qiao Z, et al., Trends Biotechnol., 39(11), 1160 (2021)
- Fu LH, Wan Y, Qi C, et al., Adv. Mater., 33(7), 2006892 (2021)
- Wang W, Ma Y, Huang M, et al., Free Radical Bio Med., 164, 175 (2021)
- Qiao Z, Zhang J, Hai X, et al., Biosens. Bioelectron., 176, 112898 (2020)
- Li K, Lu M, Xia X, et al., Chin. Chem Lett., 32(3), 1010 (2021)
- Li SL, Jiang P, Jiang FL, et al., Adv. Funct. Mater., 31(22), 2100243 (2021)
- Zhang M, Sheng B, Ashley J, et al., Sens. Actuators B-Chem., 307, 127491 (2020)
- Sui C, Tan R, Chen Y, et al., Bioconjugate Chem., 32(2), 318 (2021)
- Gao S, Zheng M, Ren X, et al., Oncotarget., 7(35), 57367 (2016)
- Huang X, Yin Y, Wu M, et al., Chin. Chem Lett., 30(6), 1335 (2019)
- Mirrahimi M, Hosseini V, Kamrava SK, et al., Artif. Cell Nanomed. B, 46(sup1), 241 (2018)
- Zhao Z, Xu K, Fu C, et al., Biomaterials, 219, 119379 (2019)
- Pidamaimaiti G, Huang X, Pang K, et al., New J. Chem., 45, 10296 (2021)
- Liu G, Zhu J, Guo H, et al., Angew. Chem.-Int. Edit., 58(51), 18641 (2019)
- Wang M, Liu L, Xie X, et al., Sens. Actuators B-Chem., 313, 128023 (2020)
- Guo W, Wang Z, Wang X, et al., Adv. Mater., 33(34), 2004287 (2021)
- Ding J, Chen J, Gao L, et al., Nano Today, 29, 100800 (2019)
- Chen J, Jiang Z, Zhang YS, et al., Appl. Phys. Rev., 8(4), 041321 (2021)
- Karimi M, Eslami M, Sahandi-Zangabad P, et al., WIREs Nanomed. Nanobi., 8(5), 696 (2016)
- Wang D, Wu H, Phua SZF, et al., Nat. Commun., 11(1), 1 (2020)
- Carr AC, Cook J, Front. Physiol., 9, 1181 (2018)
- Zhang W, Wang F, Hu C, et al., Acta Pharm. Sin. B, 10(11), 2037 (2020)
- Compañón I, Guerreiro A, Mangini V, et al., J. Am. Chem. Soc., 141(9), 4063 (2019)
- Singh B, Sharma V, Gaikwad RP, et al., Small, 17(16), 2006473 (2021)
- Huo M, Wang L, Wang Y, et al., ACS Nano, 13(2), 2643 (2019)
- Ma W, Mao J, Yang X, et al., Chem. Commun., 55(2), 159 (2019)
- Lu X, Gao S, Lin H, et al., Adv. Mater., 32(36), 2002246 (2020)
- Wang Y, Zhao X, Cao D, et al., Appl. Catal. B: Environ., 211, 79 (2017)
- Tylus U, Jia Q, Strickland K, et al., J. Phys. Chem. C, 118(17), 8999 (2014)
- Galiote NA, Oliveira FER, Lima FHB, Appl. Catal. B: Environ., 253, 300 (2019)
- Li Q, Shao Q, Wu Q, et al., Catal. Sci Technol., 8(14), 3572 (2018)
- Xiao Y, Zhang W, SN Appl. Sci., 2(2), 1 (2020)
- Huang D, Luo Y, Li S, et al., Electrochim. Acta, 174, 933 (2015)
- Varela AS, Ju W, Strasser P, Adv. Energy Mater., 8(30), 1703614 (2018)
- Devi KSS, Jacob S, Senthil KA, Langmuir, 34(24), 7048 (2018)
- Hao N, Wang H, Webley PA, et al., Microporous Mesoporous Mater., 132(3), 543 (2010)
- Tian H, Cui X, Dong H, et al., Energy Storage Mater., 37, 274 (2021)
- de la Harpe KM, Kondiah PPD, Choonara YE, et al., Cells, 8(10), 1209 (2019)
- Abbaraju PL, Meka AK, Song H, et al., J. Am. Chem. Soc., 139(18), 6321 (2017)
- Bishop JJ, Nance PR, Popel AS, et al., Am. J. Physiol.-Heart C, 280(1), H222 (2001)
- Zheng P, Ding B, Shi R, et al., Adv. Mater., 33(15), 2007426 (2021)
- Zheng P, Ding B, Jiang Z, et al., Nano Lett., 21(5), 2088 (2021)