화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.60, No.2, 255-259, May, 2022
태양열 활용 증발기의 성능 향상을 위한 국소적 젖음성 제어에 관한 실험적 연구
Performance Enhancement of Solar-Driven Steam Generator by Local Wettability Control
E-mail:
초록
태양광을 이용한 증기 발생 방법은 순수한 물이 고갈되는 현재 사회에서 해수나 폐수에서 물을 수확할 수 있는 매우 유망한 기술이다. 태양광을 이용한 증기 발생 중에서 멤브레인을 이용한 증류법은 현재 개발 중에 있지만 멤브레인이 물과 직접 접촉하여 효율적인 증발량을 늘리기가 어려웠다. 본 연구에서는 PDMS (polydimethylsiloxane)와 산화 그래 핀(GO)으로 구성된 태양열 멤브레인 증기 발생기와 부분적으로 멤브레인 전체에 절친 젖음성 제어를 통해 증발량을 개선하는 것을 제안하여 실험적 연구를 수행했다. 국부적인 젖음성 제어로 태양광과의 열교환 영역에서 열 국지화 및 온도 상승에서 상당한 개선을 보여주었다. 1sun(=1000 W/m)의 조사에서 1.54 kg m-2 h-1의 증발 능력을 갖습니다. 그 결과, 태양열 멤브레인 증기 발생 시스템은 국부적인 물 회수 성능 메커니즘을 이해 및 실험적 확인을 수행할 수 있었다.
Solar membrane steam generation is a very promising technology that can harvest purified water from seawater or wastewater during the current danger of running out of pure water. However, solar Membrane steam generation had direct contact with water, making it difficult to increase the efficient amount of evaporation. Here, we propose solar membrane steam generator composed of polydimethylsiloxane (PDMS) and graphene oxide (GO) and improved evaporation through wettability control in part throughout the water-absorbing membrane. Wettability control has shown significant improvements in thermal localization and temperature rise in the area of heat exchange with sunlight. The evaporator has an evaporation rate of 1.54 kg m-2 h-1 under 1 sun irradiation. The results showed that Solar membrane steam evaporation can effectively harvest pure water through an increase in evaporation.
  1. Bandi CS, Uppaluri R, Global AK, Desalination, 394, 30 (2016)
  2. Peñate B, García-Rodríguez L, Desalination, 284, 1 (2012)
  3. Lee SJ, Hann TS, Park SH, Appl. Mater. Interfaces, 16319 (2020)
  4. Liu X, Liu H, Yu X, Zhou L, Zhu J, Curr. Opin. Chem. Eng., 25, 26 (2019)
  5. Chen L, Wang H, Kuravi S, Kota K, Park Y, Xu P, Desalination, 483, 114412 (2020)
  6. Yu K, Shao P, Meng P, Chen T, Lei J, Yu X, He R, Yang F, Zhu W, Duan T, J. Hazard. Mater., 392, 122350 (2020)
  7. Li Q, Zhao X, Li L, Hu T, Yang Y, Zhang J, J. Colloid Interface Sci., 584, 602 (2021)
  8. Lee JH, Kim KW, Park SH, Yoon GY, Kim JJ, Lee SJ, Nano Energy, 77, 105130 (2020)
  9. Guo H, Song Y, Peng H, Wang Z, Ouyang Y, Fu Z, Wen Z, Ding M, Zhu C, Wang C, Mater. Lett., 279, 128475 (2020)