Macromolecular Research, Vol.30, No.4, 271-278, April, 2022
Application of Three-Dimensional Solubility Parameter in Diffusion Behavior of Rubber-Solvent System and Its Predictive Power in Calculating the Key Parameters
E-mail:
Three different rubbers, hydrogenated nitrile butadiene rubber (HNBR), ethylene vinyl acetate copolymer (EVM) and ethylene propylene diene rubber (EPDM), and two blends, HNBR/EVM and HNBR/EPDM were compounded both with and without fillers, and were vulcanized with the same peroxide curing system. Peppas- Sahlin model was used to explain the diffusion mechanism of solvents in rubber vulcanizates. Transport parameters including diffusion coefficient, sorption coefficient and permeation coefficient were calculated and correlated with Flory-Huggins interaction parameters (χ). The Peppas-Sahlin model dealing with diffusion behaviors of solvents shows high degree of fitting for both unfilled and filled rubber-solvent systems. With the addition of carbon black, the diffusion coefficient increases while the sorption and permeation coefficients decrease. The sorption coefficient increases linearly with the permeation coefficient. New Flory-Huggins interaction parameter (χN) calculated by threedimensional solubility parameters shows better predictive power in diffusion behaviors than the traditional one (χT). By mathematical fitting, a linear relationship can be obtained between the maximum swelling ratio and χN, while an exponential relationship is gained for the permeation coefficient. The discovery of this rule connects three-dimensional solubility parameters with the swelling of polymer in solvent, which provides experimental basis for the further study of the medium resistance of polymer.
Keywords:three-dimensional solubility parameter;flory-huggins interaction parameter;diffusion behavior;prediction model
- Ai C, Gong G, Zhao X, Liu P, Macromol. Res., 25, 461 (2017)
- Datta J, Włoch M, Macromol. Res., 23, 1117 (2015)
- Lainé E, Grandidier JC, Benoit G, Omnès B, Boyer SAE, Polym. Test, 85, 106411 (2020)
- Balasooriya W, Schrittesser B, Pinter G, Schwarz T, Conzatti L, Polymer, 11, 61 (2019)
- Hildebrand JH, Scott RL, The Solubility of Nonelectrolytes, Dover Publications, Inc., New York, 1950.
- Hildebrand JH, Scott RL, Regular Solutions, Prentice-Hall, Englewood Cliffs, New York, 1962.
- Scatchard G, Chem. Rev., 8, 321 (1931)
- Hansen CM, Ind. Eng. Chem. Res., 8, 2 (1969)
- Hansen CM, The Three-dimensional Solubility Parameter and Solvent Diffusion Coefficient, Danish Technical Press, Copenhagen, 1967.
- Hansen CM, Beerbower A, Solubility Parameters, Kirk-Othmer Encyclopedia of Chemical Technology, Interscience, New York, 1971.
- Hansen CM, J. Paint Technol., 39, 104 (1967)
- Hansen CM, J. Paint Technol., 39, 505 (1967)
- Hansen CM, Skaarup K, J. Paint Technol., 39, 511 (1967)
- Hansen CM, Hansen Solubility Parameters-A User's Handbook, CRC Press LLc, Boca Raton, Florida, USA, 2007.
- Arunan E, Desiraju GR, Klein RA, Pure Appl. Chem., 83, 1637 (2011)
- Burke J, AIC Book Paper Group Annual, 3, 13 (1984)
- Hansen CM, Prog. Org. Coat., 51, 55 (2004)
- Hansen CM, J. Paint Technol., 42, 660 (1970)
- Flory PJ, J. Chem. Phys., 42, 51 (1942)
- Huggins ML, J. Am. Chem. Soc., 64, 1712 (1942)
- Flory PJ, Principles of Polymer Chemistry, Cornell University Press, New York, 1953.
- Eichinger BE, Flory PJ, Trans. Faraday Soc., 64, 2035 (1968)
- Eichinger BE, Flory PJ, Trans. Faraday Soc., 64, 2053 (1968)
- Eichinger BE, Flory PJ, Trans. Faraday Soc., 64, 2061 (1968)
- Eichinger BE, Flory PJ, Trans. Faraday Soc., 64, 2066 (1968)
- Wang F, Saeki S, Yamaguchi T, Polymer, 40, 2779 (1999)
- Biros J, Zeman L, Patterson D, Macromolecules, 4, 30 (1971)
- Scott RL, J. Chem. Phys., 17, 279 (1949)
- Scott RL, Magat M, J. Polym. Sci., 4, 555 (1949)
- Zellers ET, J. Appl. Polym. Sci., 50, 513 (1993)
- Zellers ET, Anna DH, Sulewski R, J. Appl. Polym. Sci., 62, 2069 (1996)
- Zellers ET, Anna DH, Sulewski R, J. Appl. Polym. Sci., 62, 2081 (1996)
- Lindvig T, Michelsen ML, Kontogeorgis GM, Fluid Phase Equilib., 203, 247 (2002)
- Maria HJ, Lyczko N, Nzihou A, Mathew C, George SC, Joseph K, Thomas S, J. Mater. Sci., 48, 5373 (2013)
- Liu GY, Hoch M, Wrana C, Kulbaba K, Qiu GX, Polym. Test, 32, 1128 (2013)
- Mathai AE, Singh RP, Thomas S, J. Membr. Sci., 202, 35 (2002)
- Kaliyathan AV, Rane AV, Jackson S, Thomas S, Polym. Compos., 42, 375 (2021)
- Berriot J, Lequeux F, Montes H, Pernot H, Polymer, 43, 6131 (2002)
- Schuster RH, Issel HM, Peterseim V, Rubber Chem. Technol., 69, 769 (1996)
- Liu GY, Hoch M, Liu SS, Kulbaba K, Qiu GX, Polym. Bull., 72, 1961 (2015)
- Wang YZ, Bi LY, Zhang HJ, Zhu XT, Liu GY, Qiu GX, Liu SS, Polym. Test, 75, 380 (2019)
- Liu SS, Li XP, Qi PJ, Song ZJ, Zhang Z, Wang K, Qiu GX, Liu GY, Polym. Test, 81, 106170 (2020)
- Geim K, Novoselov A, Nat. Mater., 6, 1 (2007)
- Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS, Adv. Mater., 22, 3906 (2010)
- Mohan VB, Lau KT, Hui D, Bhattacharyya D, Compos. Part B Eng., 142, 200 (2018)
- Papageorgiou DG, Kinloch IA, Young RJ, Prog. Mater. Sci., 90, 75 (2017)
- Sun X, Huang C, Wang L, Liang L, Cheng Y, Fei W, Li Y, Adv. Mater., 2001105, 1 (2020)
- Kwon YB, Go SH, Choi C, Seo TH, Yang B, Lee MW, Kim YK, Diam. Relat. Mat., 119, 108565 (2021)
- Lim MY, Choi YS, Kim J, Kim K, Shin H, Kim JJ, Shin DM, Lee JC, J. Membr. Sci., 521, 1 (2017)
- Lim MY, Shin H, Shin DM, Lee SS, Lee JC, Polymer, 84, 89 (2016)
- Lecaros RLG, Mendoza GEJ, Hung WS, An QF, Caparanga AR, Tsai HA, Hu CC, Lee KR, Lai JY, Carbon, 123, 660 (2017)
- Wang T, Li Y, Geng S, Zhou C, Jia X, Yang F, Zhang L, Ren X, Yang H, RSC Adv., 5, 88958 (2015)
- Lee D, Hwang H, Kim JS, Park J, Youn D, Kim D, Hahn J, Seo M, Lee H, ACS Appl. Mater. Interfaces., 12, 20933 (2020)
- Lei Y, Tang Z, Liao R, Guo B, Green Chem., 13, 1655 (2011)
- Jeon J, Choi M, Kim SB, Seo TH, Ku BC, Ryu S, Park JH, Kim YK, J. Ind. Eng. Chem., 102, 233 (2021)
- Ferrari AC, Basko DM, Nat. Nanotechnol., 8, 235 (2013)
- Hong YL, Ryu S, Jeong HS, Kim YK, Appl. Surf. Sci., 480, 514 (2019)