화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.11, 3067-3073, November, 2022
Ultrasonic cavitation bubble- and gas bubble-assisted fractional precipitation for the purification of (+)-dihydromyricetin
This study presents the ultrasonic cavitation bubble- and gas bubble-assisted fractional precipitation that dramatically improves the precipitation efficiency in existing precipitation method for purifying (+)-dihydromyricetin. Compared to the conventional method, the time required for precipitation was reduced by 40 times. The particle size was reduced by 4.0-7.4 times and 3.7-4.4 times for cavitation bubbles and gas bubbles, respectively, and the diffusion coefficient was increased by 5.1-9.2 times (cavitation bubble) and 3.7-4.4 times (gas bubble). Meanwhile, the precipitation rate constant was increased by 11.0-65.0 times and 17.0-24.6 times and the activation energy was decreased by -5,543~-9,655 J/mol and -6,546~-7,404 J/mol, which resulted in an improved precipitation rate. The results of the thermodynamic analysis showed that the precipitation was exothermic and non-spontaneous.