Korean Journal of Chemical Engineering, Vol.39, No.10, 2623-2635, October, 2022
Analysis of the extrusion pressure of a cylindrical extruder for extruding highly viscous fluids
Extrusion pressure is crucial for the security and performance of a cylindrical extruder during the extrusion process. In this study, a validated CFD model was adopted to evaluate the relationship between the extrusion velocity, fluid viscosity, and the extrusion pressure of a cylindrical extruder while extruding highly viscous fluids. The simulated and experimental results of the extrusion pressure and velocity profiles show good agreement. This study reveals that extrusion pressure evolution can be divided into two stages during the extrusion process. At stage I, the distance between the ram and the bottom of the vessel (liquid height) is greater than the critical height and the extrusion pressure remains almost constant. At stage II, the distance is less than the critical height and the extrusion pressure increases exponentially. The results indicate that an increase in extrusion velocity and fluid viscosity leads to a linear increase in the extrusion pressure at stage I. Furthermore, by introducing a pressure number, Np, and a pressurerelated Reynolds number, Rep, a novel correlation of the extrusion pressure with the extrusion velocity, viscosity of highly viscous fluids and liquid height has been developed.