화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.12, 3190-3203, December, 2022
Dynamic simulation and control of a triple column process for dimethyl carbonate-methanol separation
Separation of dimethyl carbonate/methanol azeotropic mixture by using pressure-swing distillation process has been a hot-point in the study of the synthesis process of dimethyl carbonate by urea methanolysis method. This study updates the work of the writers (Ind.Eng.Chem.Res,2013,52,11463-11478), which explores the dynamic control structure of the three-column separation dimethyl carbonate (DMC)/methanol (MeOH) process from an actual pilot plant. At first, the conventional DMC/MeOH separation process in the pilot test of the DMC synthesis process through alcoholysis of urea was described in detail. Then an optimized control structure for the entire DMC/MeOH separation unit was obtained by implementing a general heuristic design procedure. An economic analysis was performed to evaluate the optimized process. Finally, three dynamic control schemes were proposed and evaluated with several large disturbances, an improved control scheme CS3, using the multiplier blocks “QR1/F1” and “RR1” in T1, “QR1/F1” and “R/F” in both T2 and T3, outperformed CS1 and CS2 by maintaining the product specification in each column.