Applied Biochemistry and Biotechnology, Vol.51-52, 673-680, 1995
Energy Generation by Methanation of Persistent Wastes
A 15-L anaerobic fixed-film reactor (AFFR) was evaluated for treating a trade effluent containing inhibitory concentrations of persistent branched-chain fatty acids, namely 2-ethylhexanoic acid (2-EHA) and neopentanoic acid (NPA), at a total of 17,000 mg COD/L. The AFFR was packed with fire-expanded clay spheres, and start-up was accomplished in 60 d. The organic load was increased in steps from 1.1 to 8.5 g COD/L/d. Total COD, 2-EHA, and NPA removal efficiencies were maintained above 70, 98, and 75%, respectively. The reactor could recover from a shock load of 150% increase in organic load. Combined mechanisms of organic adsorption and biodegradation rendered the AFFR more stable with shock loads. Methane gas produced from the process could be used for preheating the effluent.