화학공학소재연구정보센터
Langmuir, Vol.15, No.3, 807-812, 1999
Anisotropic dissolution of an Au(111) electrode in perchloric acid solution containing chloride anion investigated by in situ STM - The important role of adsorbed chloride anion
The anodic dissolution process of Au( 111) in a 0.1 M perchloric acid (HClO4) solution containing chloride anion (Cl-) was investigated using an in situ scanning tunneling microscope. The initial dissolution of gold was observed at the step sites when the electrode potentials became more positive than +1.0 V. The rate of the anodic dissolution increased as the potential became more positive. When the potential became more positive than + 1.35 V, dissolution on the terraces was also observed. The dissolution of Au(111) anisotropically proceeds in a layer-by-layer mode. Step lines along the [110] direction, which were found in the double-layer region, disappeared, and ones along the [211] direction were newly formed during the dissolution process. The gold surface became rougher when the electrode potential became more positive than +1.45 V, where anodic dissolution and oxide formation simultaneously took place. The gold surface was completely passivated at +1.7 V. The mechanism for the anisotropic dissolution is discussed in relation to the structure of the chloride adlayer on the Au(lll) electrode surface.