화학공학소재연구정보센터
Langmuir, Vol.16, No.4, 1951-1959, 2000
Interfacial properties of aggregates formed by cationic polyelectrolyte and anionic surfactant
Interactions between mica surfaces across aqueous solutions containing mixtures of a highly positively charged polyelectrolyte and an anionic surfactant were studied by use of a surface force apparatus. The investigation was carried out with a constant polyelectrolyte concentration (20 ppm) and a wide range of surfactant concentrations [0-1 times the critical micelle concentration (cmc)]. The chemical composition of the adsorbed polyelectrolyte-surfactant layers was analyzed by x-ray photoelectron spectroscopy (XPS). The properties of polyelectrolyte-surfactant aggregates formed in bulk were studied by measurements of turbidity and electrophoretic mobility. The aggregates formed at low surfactant concentrations (<0.04 times cmc) were positively charged, whereas at higher surfactant concentrations the aggregates carried a net negative charge. It was shown that polyelectrolyte-surfactant aggregates rapidly adsorb on negatively charged mica surfaces regardless of the sign of their charge. At surfactant concentrations up to 0.01 times cmc, the polyelectrolytes adsorb on mica surfaces with loops acid tails stretching out into solution and repulsive steric forces are generated. The thickness of the layer decreases with time and we suggest that this conformational change is accompanied by some expulsion of surfactant from the adsorbed layers. Thick adsorbed layers were formed in the surfactant concentration range 0.02-0.1 times cmc. In this concentration regime the measurement of equilibrium forces was inaccessible due to a very slow layer relaxation. During compression the forces were repulsive and during separation an attraction developed. We attribute this to formation of interlayer surfactant bridges. Finally, at high surfactant concentrations (greater than or equal to 0.4 times cmc) highly negatively charged aggregates adsorb on the surfaces in rather thin layers, resulting in purely repulsive forces of mixed electrostatic and steric origin.