화학공학소재연구정보센터
Macromolecules, Vol.27, No.9, 2414-2425, 1994
Micellization of Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene Oxide) Triblock Copolymers in Aqueous-Solutions - Thermodynamics of Copolymer Association
The critical micellization temperature (cmt) and critical micellization concentration (cmc) values of 12 Pluronic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, covering a wide range of molecular weights (2900-14 600) and PPO/PEO ratios (0.19-1.79), were determined employing a dye solubilization method. A closed association model was found to describe adequately the copolymer micellization process for the majority of the Pluronics and used to obtain the standard free energies (DELTAG-degrees), enthalpies (DELTAH-degrees), and entropies (DELTAS-degrees) of micellization. It was determined that the micellization process is entropy-driven and has an endothermic micellization enthalpy. The hydrophobic part of the Pluronics, PPO, was responsible for the micellization, apparently due to diminishing hydrogen bonding between water and PPO with increasing temperature. The cmc dependence on temperature and size of headgroup (PEO) of Pluronics follows a similar trend with lower molecular weight C(i)E(j) nonionic surfactants, the effect of temperature being more pronounced with the Pluronics. The PEO-PPO-PEO block copolymers were compared to PPO-PEO-PPO block and PEO-PPO random copolymers, in an attempt to probe the effect of molecular architecture in the formation of micelles. No micelles were observed in aqueous PPO-PEO-PPO block copolymer solutions with increasing temperature, up to the cloud point.