Macromolecules, Vol.32, No.25, 8277-8282, 1999
Synthesis and characterization of poly(methyl methacrylate)-block-poly(n-butyl acrylate)-block-poly(methyl methacrylate) copolymers by two-step controlled radical polymerization (ATRP) catalyzed by NiBr2(PPh3)(2), - 1
Poly(methyl methacrylate)-block-poly(n-butyl acrylate)-bloch-poly(methyl methacrylate) triblock copolymers (MnBM) have been synthesized by the sequential controlled radical polymerization (atom transfer radical polymerization, ATRP) of n-butyl acrylate (n-BuA) followed by methyl methacrylate (MMA). The polymerization of n-BuA has been first initiated by the difunctional (diethyl meso-2,5-dibromoadipate) initiator in the presence of the NiBr2(PPh3)(2) catalyst. After isolation, the alpha,omega-dibromo poly(n-butyl acrylate) chains have been used as macroinitiators for the polymerization of either n-BuA or MMA leading to chain extension or to the desired triblock copolymers, respectively. The kinetic study of the two-step process has shown that the initiation of the MMA polymerization by the poly(n-BuA) macroinitiator is slow and leads to PMMA outer blocks of broad polydispersity. Differential scanning calorimetry (DSC) and dynamical mechanical analysis (DMA) have confirmed the two-phase morphology of the triblocks. Finally, DMA and tensile testing of these copolymers have emphasized poor mechanical properties in possible relation to the broad polydispersity of the PMMA outer blocks.
Keywords:TRANSITION-METAL COMPLEXES;METHYL-METHACRYLATE;CARBON-TETRACHLORIDE;BLOCK-COPOLYMERS;ACRYLATE;POLYMERS;HALIDE