화학공학소재연구정보센터
Nature, Vol.374, No.6517, 74-77, 1995
Conversion of Antagonist-Binding Site to Metal-Ion Site in the Tachykinin NK-1 Receptor
MUTATIONAL analysis of the tachykinin NK-1 (refs 1-7), NK-2 (ref. 8) and angiotensin AT-1 (refs 9, 10) receptors indicates that non-peptide antagonists act through residues located between the seven transmembrane segments, whereas natural peptide agonists bind to residues scattered in the exterior part of the receptor(1-4,11-13). The presumed contact points for the prototype NK-1 antagonist CP96,345 cluster on opposing faces of the outer portions of transmembrane helices V and VI (refs 1-5). Here we show that systematic introduction of histidyl residues at this antagonist-binding site in the human NK-1 receptor gradually converts it into a high-affinity metal-ion-binding site without affecting agonist binding. In a double mutant with histidine residues substituted at the top of transmembrane segments V and VI, respectively, Zn2+ inhibits binding of radiolabelled agonist peptide and efficiently blocks phosphoinositol turnover induced by substance P. We propose that Zn2+ and CP96,345 act as ’allosteric competitive’ antagonists by stabilizing inactive conformations of the mutant and the wild-type receptor respectively. Introduction of metal-ion-binding sites could be used as a general tool in the structural and functional characterization of helix-helix interactions in G-protein-coupled receptors, as well as in other membrane proteins.