Nature, Vol.374, No.6520, 345-347, 1995
Chiral Discrimination of Monosaccharides Using a Fluorescent Molecular Sensor
MEANS of distinguishing between enantiomers of a chiral molecule are of critical importance in many areas of analytical chemistry and biotechnology, particularly in drug design and synthesis. In particular, solution-based sensor systems capable of chiral recognition would be of tremendous pharmaceutical value. Here we report the chiral discrimination of D- and L-monosaccharides using a designed receptor molecule that acts as a sensor by virtue of its fluorescent response to binding of the guest species. Our receptor contains boronic acid groups that bind saccharides by covalent interactions; such receptor systems have been much studied previously(1-6) for complexation of saccharides, and have an advantage over others based on hydrogen-bonding interactions(7-11), for which polar protic solvents such as water can compete with guest binding. Our molecular sensor also incorporates a fluorescent naphthyl moiety; binding of each enantiomer of the monosaccharides alters the fluorescence intensity to differing degrees, enabling them to be distinguished. These water-soluble molecular sensors might form the basis of a quantitative and selective analytical method for saccharides.