화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.58, No.4, 482-486, 2002
Growth of sulfate-reducing bacteria with solid-phase electron acceptors
Hannebachite (CaSO(3)(.)0.5H(2)O), gypsum (CaSO(4)(.)2H(2)O), anglesite (PbSO4), and barite (BaSO4) were tested as electron acceptors for sulfate-reducing bacteria with lactate as the electron donor. Hannebachite and gypsum are commonly associated with flue gas desulfurization products, and anglesite is a weathering product found in lead mines. Barite was included as the most insoluble sulfate. Growth of sulfate-reducing bacteria was monitored by protein and sulfide (dissolved H2S and HS-) measurements. Biogenic sulfide formation occurred with all four solid phases, and protein data confirmed that bacteria grew under these electron acceptor conditions. Sulfide formation from gypsum was almost comparable in rate and quantity to that produced from soluble sulfate salt (Na2SO4); hannebachite reduction to sulfide was not as fast. Anglesite as the electron acceptor was also reduced to sulfide in the solution phase and galena (PbS) was detected in solids retrieved from spent cultures. Barite as the electron acceptor supported the least amount of growth and H2S formation. The results demonstrate that low-solubility crystalline phases can be biologically reactive under reducing conditions. Furthermore, the results demonstrate that galena precipitation through sulfide production by sulfate-reducing bacteria serves as a lead enrichment mechanism, thereby also alleviating the potential toxicity of lead. In view of the role of acidophilic thiobacilli in the oxidation of sulfides, the present work accentuates the role of anaerobic and aerobic microbes in the biogeochemical cycling of solid-phase sulfates and sulfides.