Applied Mathematics and Optimization, Vol.38, No.3, 261-281, 1998
Ergodic control of a singularly perturbed Markov process in discrete time with general state and compact action spaces
Ergodic control of singularly perturbed Markov chains with general state and compact action spaces is considered. A new method is given for characterization of the limit of invariant measures, for perturbed chains, when the perturbation parameter goes to zero. It is also demonstrated that the limit control principle is satisfied under natural ergodicity assumptions about controlled Markov chains. These assumptions allow for the presence of transient states, a situation that has not been considered in the literature before in the context of control of singularly perturbed Markov processes with long-run-average cost functionals.