화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.40, No.4, 541-548, 1993
Aerobic Mineralization of Chlorobenzoates by a Natural Polychlorinated Biphenyl-Degrading Mixed Bacterial Culture
A natural mixed aerobic bacterial culture, designated MIXE1, was found to be capable of degrading several low-chlorinated biphenyls when 4-chlorobiphenyl was used as a co-substrate. MIXE1 was capable of using all the three monochlorobenzoate (CBA) isomers tested as well as 2,5-, 3,4- and 3,5-dichlorobenzoate (dCBA) as the sole carbon and energy source. During MIXE1 growth on these substrates, a nearly stoichiometric amount of chloride was released : 0.5 g/l of each chlorobenzoate was completely mineralized by MIXE1 after 2 or 3 days of culture incubation. Two strains, namely CPE2 and CPE3, were selected from MIXE1 : CPE2, referred to the Pseudomonas genus, was found to be capable of totally degrading both 2-CBA and 2,5-dCBA, whereas Alcaligenes strain CPE3 was capable of mineralizing 3-, 4-CBA and 3,4-dCBA. Substrate uptake studies carried out with whole cells of strain CPE2 suggested that 2-CBA was metabolized through catechol, while 2,5-dCBA was degraded via 4-chlorocatechol. 3-CBA, 4-CBA, and 3,4-dCBA appeared to be degraded through 3,4-dihydroxybenzoate by the CPE3 strain. MIXE1, which is capable of degrading several chlorobenzoates, should therefore be able to mineralize a number of low-chlorinated congeners of simple and complex polychlorinated biphenyl mixtures.