화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.41, No.6, 700-707, 1994
Chemical and Biological Removal of Cyanides from Aqueous and Soil-Containing Systems
A study was conducted to determine the effect of various factors on the rate and extent of potassium cyanide and potassium hexacyanoferrate (II, complex form) removal from aqueous and soil-containing systems. In a sterile aqueous system at neutral pH, the concentration of free cyanide was reduced by 42% in 334 h as a result of the protonation of CN- and the volatilization of the HCN formed. In the presence of aerobic mixed consortium of the Institute of Gas Technology and a methylotrophic culture, Isolate 3, the concentration of free cyanide was reduced by 59% and 66% in 357 h, respectively, as a result of combined chemical conversion and microbial degradation. In the sterile aqueous system amended initially with the complex form of cyanide, a less-than-20% reduction in cyanide occurred. The sorption equilibria for free and complex cyanides in slurries of the topsoil and manufactured gas plant (MGP) soil was reached in less than 22 and 4 days, respectively. The extent of desorption of cyanides from topsoil and MGP soil into water decreased with time. In sterile systems containing topsoil and MGP soil that were previously equilibrated to cyanides, only a 2% reduction in cyanide concentration occurred in 336 h due to chemical conversion. In the presence of microbial cultures, the concentration of cyanide was reduced by less than 15% and 7% in the slurries of topsoil and MGP soil, respectively. The comparison of the rate and extent of cyanide removal from the aqueous and soil-containing systems in the presence of micro-organisms suggests that cyanides were retained by the solid phase of the soil-containing systems and therefore were less available for biodegradation.