화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.42, No.5, 738-743, 1995
The Glucose-Dehydrogenase Mediated Energization of Acinetobacter-Calcoaceticus as a Tool for Evaluating Its Susceptibility to, and Defense Against, Hazardous Chemicals
Cells of Acinetobacter calcoaceticus 69-V could be energized by glucose oxidation after the growth on acetate, ethanol, hexanol and benzoate. The velocities of glucose oxidation-driven ATP syntheses were relatively constant in the range from pH 5.4 to 7.5. With decreasing pH values (7.0, 6.0, 5.4) ATP synthesis was inhibited more strongly by the action of 2,4-dinitrophenol and at the same pH value glucose oxidation was nearly unimpaired or inhibited more weakly. This finding is expressed by a decrease of the P/O ratios, indicating the uncoupling of the electron-transport phosphorylation by 2,4-dinitrophenol. The sensitivity towards this uncoupling effect was higher in ethanol-grown cells of Acinetobacter calcoaceticus 69-V than in hexanol- or acetate-grown cells. This increase in sensitivity was accompanied by a decrease of the ratio of saturated (mainly C16:0)to unsaturated (C16:1, C18:1) fatty acids in ethanol-grown cells compared with hexanol-grown ones. The knowledge of such differences in the susceptibility and its molecular background, e.g. possible substrate-induced changes of the fatty acid composition of the cytoplasmic membranes, should help elucidate mechanisms of poisoning by membrane-active hazardous chemicals and develop defence strategies.