화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.43, No.3, 402-407, 1995
Efficient Kinetic Resolution of DL-Menthol by Lipase-Catalyzed Enantioselective Esterification with Acid Anhydride in Fed-Batch Reactor
Acid anhydrides were used as highly reactive and non-water-producing acyl donors for hydrolase-catalyzed enantioselective esterification. Efficient kinetic resolution of dl-menthol has been achieved via lipase-catalyzed enantioselective esterification in cyclo-hexane when propionic anhydride as an acyl donor was continuously fed into a reactor containing dl-menthol and Candida cylindracea lipase OF 360, while a high concentration of the acid anhydride in a batch reaction system with a dehydrated organic solvent did not facilitate the reaction, because water necessary for the enzyme function was consumed by the competing hydrolysis of the anhydride catalyzed by the same enzyme. The efficiency of this fed-batch reaction system using acid anhydride was higher and the enzyme stability in repeated use was much better than those of conventional batch and fed-batch reaction systems using propionic acid as an acyl donor. The optical purity (more than 98% e.e.) of the l-menthyl ester produced in the fed-batch system using the anhydride was comparable to that in the system using the corresponding acid.