Polymer Engineering and Science, Vol.36, No.7, 912-924, 1996
3-Dimensional Flow Modeling of a Self-Wiping Corotating Twin-Screw Extruder .2. The Kneading Section
Three-dimensional flow simulations of kneading elements in an intermeshing corotating twin-screw extruder are performed by solving the Navier Stokes equations with a finite element package, Sepran. Instead of using the whole geometry of the 8-shaped barrel a simplified geometry is used, representing a large part of the geometry during the rotating action of the kneading paddle. The goal of these calculations is to study the dependence of several factors that influence mixing, such as shear rate, elongation rate, pressure, and the flow profile in the extruder on various extruder parameters, such as fluid viscosity, rotation speed, and throughput. The shear and elongation rate and the pressure drop are calculated for varying viscosities. The various stagger angles possible for disc configurations in the corotating twin-screw extruder are modeled. The axial backflow volume is calculated for varying values of rotation speed and throughput.