Polymer Engineering and Science, Vol.36, No.22, 2765-2770, 1996
Linear Low-Density Polyethylene Addition to Polypropylene/Elastomer Blends - Phase-Structure and Impact Properties
Morphology features and effects of particle size and composition of the disperse phase on the impact properties have been studied for the blends of isotactic polypropylene (PP)/ethylene-propylene-diene terpolymer and (EPDM)/linear low-density polyethylene (LLDPE). The blend components were mixed in a twin-screw extruder, press molded, and analyzed by scanning electron microscopy, SEM (fractured and toluene etched samples), and by transmission electron microscopy, TEM (RuO4 stained samples). TEM was most effective for the identification of component distribution and particle size measurement. An Increasing degree of LLDPE and EPDM interpenetration was observed with the PE content. Not one case of a neat component separation was detected. LLDPE addition improves the EPDM dispersability, affecting mainly the larger particles. The impact properties at room temperature were especially dependent on the rubber content, whereas at low temperature the particle diameter appears to be the controlling parameter. The affect of LLDPE on blend toughness is more evident in the latter case.