Polymer Engineering and Science, Vol.39, No.1, 110-118, 1999
Process-induced residual stresses in compression molded UHMWPE
Non-isothermal cooling during processing causes the development of residual stresses, which are analyzed for compression molded UHMWPE, and affects the dimensional stability. The development of thermal residual stresses was predicted using an incremental stress analysis that included temperature-dependent material properties. Strain gauges were used to measure the residual stresses as layers were removed from a molded disk using a Process Simulated Laminate (PSL) approach. The PSL technique has not previously been applied to a compression molded neat polymer. For initial surface cooling rates of similar to 11 degrees C/min, the model predicted a compressive stress at the bottom surface of 14 MPa and a tensile stress near the center of 2.5 MPa and matched the experimental distribution well. Because the compressive residual stress was 70% of the yield strength (similar to 20 MPa), a lower cooling rate was also tested (2.6 degrees C/min). The maximum tensile and compressive stresses for this cooling rate were, 0.91 MPa and 2.5 MPa, respectively. The model demonstrated its use for predicting thermal residual stresses in compression molded parts, instead of trial-and-error experimentation. UHMWPE is shown to develop residual stresses continually from similar to 120 degrees C to 23 degrees C.