화학공학소재연구정보센터
Polymer Engineering and Science, Vol.39, No.9, 1736-1751, 1999
Effect of polymer properties on the structure of injection-molded parts
In this study, the distributions of both molecular orientation and crystallinity along the flow direction as well as across the thickness direction of injection-molded specimens of poly(ethylene terephthalate) (PET) molded at different mold temperatures were investigated. The degree of molecular orientation at the surface of the specimens was compared with that of other injected materials (polystyrene, high density polyethylene, liquid crystal polymer) showing different thermal, rheological, and crystallization characteristics. It was found that the molecular orientation at the skin layer of the molding increases with the polymer relaxation time, the rigidity of the polymer molecules, and the crystallization rate of the polymer. Moreover, in the case of PET, it was found that the crystallinity at the skin layer and in the core of the molding depends on the mold temperature. For low mold temperatures, near the gate, the maximum of crystallinity was observed at the sub-skin layer because of the "shear-induced crystallization" generated during the filling stage. On increasing the mold temperature, the maximum of crystallinity was found to shift to the skin layer as a result of the decrease of the thickness of this layer. For low mold temperatures, the variation of the molecular orientation in the thickness direction was found to be much the same as for the crystallinity of the polymer. This result indicates that the shear-induced crystallization process improves the degree of molecular orientation in the flow direction since it inhibits the relaxation process of the polymer molecules.