Polymer Engineering and Science, Vol.40, No.5, 1056-1064, 2000
Interfacial instabilities in coextrusion flows of low-density polyethylenes: Experimental studies
A fundamental investigation into the interfacial instability phenomenon was performed. Coextrusion experiments were carried out using well-characterized low-density (LDPE) resins in an effort to gain a better understanding of interfacial instability phenomena The resins used were chosen carefully and included materials of high and low viscosity as well as broad and narrow molecular weight distributions (MWD). The experiments involved the coextrusion of either the same material in both layers or various combinations of the four materials and the focus of the work was to elucidate the effects of flow rates, molecular weight (MW) and MWD on interfacial instability. The effect of the geometry at the point where the materials merged was also investigated. It was concluded that there are essentially two types of interfacial instabilities and that the MW had the strongest effect on the occurrence of the "zig-zag" instability due to high interfacial stress while the breadth of the MWD had a strong effect on the appearance of the "wave" instability. Broad MWD materials had a greater tendency to exhibit interfacial instability, which is more due to layer ratio than processing conditions or die geometries. The results suggest that the origin of the "wave" type of interfacial instability is due to an extreme extensional deformation of the minor layer at the merge point and that the viscoelastic properties of adjacent layers determine the instability development.