화학공학소재연구정보센터
Powder Technology, Vol.100, No.2-3, 242-250, 1998
Attrition of porous glass particles in a fluidised bed
Fluidisation is frequently accompanied by unwanted attrition of the bed material. This paper focuses on the mechanical aspects of fines creation by attrition in fluidised beds supported by multi-orifice distributor plates. The attrition rates of low-density porous glass particles were measured; these particles show abrasive wear behaviour rather than breakage. Positron emission particle tracking (PEPT) was used to follow particle motion in three dimensions within the fluidised bed. For a single orifice distributor with background fluidisation, the attrition rate increased exponentially with increasing orifice gas velocity. For a multi-orifice distributor, however, attrition rates were roughly proportional to excess gas velocity, except near to a critical ratio of particle to orifice diameter; as this ratio approached 2, attrition was observed to increase by an order of magnitude. A method is proposed for estimating attrition rates from a combination of small-scale experimental results and theoretical calculations of distributor jet entrainment rates.